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Trefftz Methods for Time Dependent Partial Differential Equations

Hokwon A. Chot, M. A. Golberg?, A. S. Muleshkov?! and Xin Lit

Abstract:  In this paper we present a mesh-free ap-
proach to numerically solving a class of second order
time dependent partial differential equations which in-
clude equations of parabolic, hyperbolic and parabolic-
hyperbolic types. For numerical purposes, a variety of
transformationsisused to convert these equationsto stan-
dard reaction-diffusion and wave eguation forms. To
solve initial boundary value problems for these equa-
tions, the time dependence is removed by either the
Laplace or the Laguerre transform or time differencing,
which converts the problem into one of solving a se-
guence of boundary value problems for inhomogeneous
modified Helmholtz equations. These boundary value
problems are then solved by a combination of the method
of particular solutionsand Trefftz methods. To do this, a
variety of techniques is proposed for numerically com-
puting a particular solution for the inhomogeneous mod-
ified Helmholtz equation. Here, we focus on the Dua
Reciprocity Method where the source term is approxi-
mated by radia basis functions, polynomial or trigono-
metric functions. Analytic particular solutions are pre-
sented for each of these approximations. The Trefftz
method is then used to solve the resulting homogenous
equation obtained after the approximate particular solu-
tionis subtracted off. Two types of Trefftz bases are con-
sidered, F-Trefftz bases based on the fundamental solu-
tion of the modified Helmholtz equation, and T-Trefftz
bases based on separation of variables solutions. Var-
ious techniques for satisfying the boundary conditions
are considered, and a discussion is given of techniques
for mitigating the ill-conditioning of the resulting linear
systems. Finally, some numerical resultsare presented il-
lustrating the accuracy and efficacy of this methodology.
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1 Introduction

Traditional methods for numerically solving partial dif-
ferential equations (PDES) such as the finite difference,
finite element and boundary element methods all require
meshing some or al of the solution domain [Strang and
Fix (1973); Partridge, Brebbia and Wrobel (1992); Gol-
berg and Chen (1996)]. Thiscan be extremely time con-
suming, particularly for problems in R3and can severely
limit the attainable accuracy because meshing the do-
main boundary can usually be done with only limited ac-
curacy [Strang and Fix (1973); Partridge, Brebbia and
Wrobel (1992); Golberg and Chen (1996)]. Conse-
guently, over the past decade there has been increasing
interest in developing meshless methods which elimi-
nate or substantialy reduce the need for domain mesh-
ing. Among these methods are the element-free Galerkin
method [Belytschko and Lu (1994)], reproducing ker-
nel particle methods [Liu, Jun, Li, Adee and Belytschko
(1995)], the local Petrov-Galerkin method and methods
based on radia basis function approximations [Kansa
(1990a, 1990b)]. With the exception of the latter, al
the other methods require at least some meshing for nu-
merical integration, hence are more redlistically mesh re-
duced, rather than mesh-free methods. Interestingly, for
many years during the 50's, 60’sand 70'sapopular class
of methods was the Trefftz methods introduced in 1926
[Trefftz (1926)] which are based on approximating so-
lutions by generalized Fourier series. These methods are
truly meshless, since they can be implemented without
either domain or surface meshing. Unfortunately, their
use was limited largely to the solution of homogeneous
elliptic equations such as the Laplace, Helmholtz and bi-
harmonic equations. However, in recent years, extensive
research on the numerical evaluation of particular solu-
tions to PDEs based on early research of [Nardini and
Brebbia (1982)] and [Atkinson (1985)] has enabled one
to extend these methods to solve inhomogeneous ellip-
tic [Fairweather and Karageorghis (1998); Golberg and
Chen (1998)], nonlinear [Golberg and Chen (1998)] and
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time dependent PDEs [Golberg and Chen (1998)]. Itis
the purpose of this paper to present a meshless approach
to solving a class of second order time-dependent PDEs
based on a combination of the method of particular solu-
tions and the Trefftz method.

The paper is composed of eight sections. In Section 2 we
present boundary value problems (BVPs) for a class of
second order PDES which contains parabolic, hyperbolic
and parabolic-hyperbolic equations. By using a variety
transformations we show how to reduce these equations
to familiar reaction-diffusion and wave equation forms.
In addition to standard Dirichlet, Neumann and mixed
boundary conditions, we consider a class of recently dis-
cussed nonlocal boundary conditions and the solution of
boundary value problems for functionally graded mate-
rials [Paulino, Sutradhar and Gray (2002); Sutradhar,
Paulino and Gray (2002)].

In Section 3 we show how to reduce the solution of the
standard time dependent PDES to solving BVPs for the
inhomogeneous modified Helmholtz equation. We dis-
cuss three methods for doing this; the Laplace transform
[Moridis (1987)], varioustime-differencing schemes[Su
and Tabarrok (1997); Ingber and Phan-Thien (1992);
Chapko and Kress (1997)] and the Laguerre transform
[Chapko and Kress (2000)].

In Section 4 we introduce the method of particular so-
lutions (MPS) to reduce the inhomogeneous modified
Helmholtz equation to BV Ps for the homogeneous mod-
ified Helmholtz equation. Here we assume that the nec-
essary particular solutions are known and focus on the
general Trefftz method for solving homogeneous BV Ps.
In particular, we concentrate on methods for satisfying
the boundary conditions. A variety of methods is dis-
cussed; collocation, least squares and Galerkin’s method,
with Galerkin’smethod appearing to be the most reliable.

In Section 5 we turn to the issue of numerically evaluat-
ing particular solutions to the inhomogeneous modified
Helmholtz equation. Two general approaches are dis-
cussed. The direct numerical calculation of the classical
domain integral [Partridge, Brebbia and Wrobel (1992);
Golberg and Chen (1996)] and the currently more popu-
lar Dual Reciprocity Method (DRM) [Partridge, Brebbia
and Wrobel (1992); Golberg and Chen (1996)]. Here,
the source term is approximated by an appropriate set of
basis functions and then an approximate particular so-
lution is obtained by analytically solving the modified
Helmholtz equation with the approximate source term.
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Threetypes of approximationsare considered: radial ba-
sisfunctions (RBFs), polynomials[Golberg, Muleshkov,
Chen and Cheng (2003); Muleshkov, Chen, Golberg and
Cheng (2000)] and trigonometric approximations [Li
and Chen (2004)]. Advantages and disadvantages are
discussed.

In Section 6 we return to a discussion of specific Tr-
efftz bases. Two genera classes of bases are consid-
ered, F-Trefftz bases based on fundamental solutions of
the modified Helmholtz equation [Golberg, Muleshkov,
Chen and Cheng (2003)] and T-Trefftz bases which
are generally obtained by separation of variables in po-
lar and Cartesian coordinate systems [Cheung, Jin and
Zienkiewicz (1991); Discroll (1995); Melenk (1995);
Melenk and Babuska (1995)]. For two dimensional
problems we show how Bergman-Vekua operators can
be used to obtain error estimates for T-Trefftz bases
[Bergman and Herriot (1965); Vekua (1967); Melenk
(1995); Melenk and Babuska (1995)].

In Section 7 we present some numerical examples to
show the efficacy and efficiency of our approach. We
conclude the paper with some discussion of future re-
search in thisarea.

2 Boundary Value Problems for Time Dependent
PDEs

In this paper we consider the numerical solution of ini-
tial boundary value problems for a class of second order
partial differential equations (PDEs) of the form

d%u

2 ou ou )
Za‘amax, izl U= +b62+f|n}R
(2.1)
and

du  d%u 3
ZiajaX'aXJJrZiK +bat2+me
(2.2)

where

and

Az=[aj], 1<i,j<3 (2.4)
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are constant, symmetric, positive definite matrices and
(a, b, c) are non-negative constants.

If b= 0, a> 0then (2.1)-(2.2) are parabolic equations
and if b > 0, a> 0 then (2.1)-(2.2) are caled hyper-
bolic equations. For numerical purposes, it is conve-
nient to transform (2.1)-(2.2) into a standard form. For
parabolic equations, the standard form is the reaction-
diffusion equation,

°u  0°u ou .
4+ -——cu=—+f inR? 25
EY: + EY: cu= = +fin (2.5)
and

2 2 2

ou, U oUWt inRe (2.6)

e e M
Asusual, we will denote the left hand sides of (2.5)-(2.6)
as Au— cu where A isthe Laplacian operator.
For hyperbolic equations the standard form is,

2

ot2
the classical wave equation. We consider these cases sep-
arately.

Au—cu=—+f inRY d=2,3 (2.7)

2.1 Parabolic Equations

Although one can consider boundary value problems for
both bounded and unbounded domains, in this paper we
will focus primarily on problems in bounded domains.
Hence, let D be a bounded domain in RY, d = 2, 3 with
boundary S. Dencting the left hand side of (2.1)-(2.2) by
Lu, the parabolic equation takes the form

ou

Lu=a—+f.
uaat+

In theinitial boundary value problem (IBVP) one speci-
fies, theinitial condition

(2.8)

u(PR0)=m(P), PeDUS (2.9
and boundary conditions
Bu(Pt)=g(Pt),PeS (2.10)

where B is an appropriate boundary operator. The most
common forms of boundary conditions are, Dirichlet
boundary conditions,

Bu=uy; (2.11)

Neumann boundary conditionswhere

ou
Bu= — 2.12
U= on (212)
and du/dn. isthe conormal derivative of u. Here,
ou
a—nc - grwu N nc (213)

where n¢ isthe conormal at P € S Specificaly, if A isas
in (2.3)-(2.4) then

d
Ne=An= ajnj|,1<i<d
(Zl

wheren = (n;j), 1 <i < d isthe unit outward normal at
PeS

(2.14)

Mixed Boundary Conditions:

Here, we assume that S=S,US, SSNS = 0 and one
specifies Dirichlet boundary conditions on S; and Neu-
mann boundary conditionson Sy. If g; and g, are the cor-
responding boundary conditions, and w(P) =1, P € S;
and w(P) =0, P € S, then these boundary conditions
can be written inthe form

0
wu+ (1 —w) H =wg1+ (1—-w)go.

I (2.15)

Infact, if Pe S;, thenw=1,1—w=0s0(2.15) becomes
u=0i, (2.16)
whileif Pe S, w=0,1—w = 1and (2.15) becomes

Jdu
— =0p. 2.17
ane (o7} (2.17)

Hence, letting g = wgs + (1 —w) g2 (2.15) can bewritten
as

Bu=g (2.18)

where Bu=wu-+ (1—w)du/onc.
One can aso consider boundary conditions of the third
kind - Robin boundary conditions

Jdu

-~ 2.1
one a(P)u+g (2.19)
where

Bu= a_u —a(P)u (2.20)
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One can aso consider non-linear boundary conditions,
such as radiation boundary conditions

ou 4

— =au*. 221
ang ~ OU (2.21)

However, in this paper we will only deal with the case
where B islinear.

Under appropriate smoothness conditionson S, f and g
and compatibility conditions on the initial and boundary
data, one can show that (2.8)-(2.10) have unique solu-
tions. For details one can consult [Friedman (1964)].
We will assume that these conditions are met in the re-
mainder of the paper.

Although (2.8)-(2.10) represent classical IBVPs, in re-
cent years a number of authorshave considered non-local
conservation conditions on u of the form [Cannon and
Lin (1990); Ang (2002)]

/u(P,t)dV —h(t).
D

When (2.8) is in the standard form (2.5)-(2.6) with ¢ =
f = 0, this condition can be converted to a non-local
boundary condition on Sas follows.

Assuming h in (2.22) is differentiable, we differentiate
(2.22) giving

(2.22)

/ O WPV = (1), (2.23)
D Ot

From (2.5)-(2.6) du/ot = Au so that
/ Au(Pt)dV = (t / divgradu(Pt)dV.  (2.24)
Now, by using the divergence theorem,
/divgradu(P,t)dV

D

_/n-gradu(Rt)dS—/a—u(Pt)dS (2.25)

S son

Hence, the conservation condition (2.22) is equivaent to
the non-local boundary condition

Jdu

5 (2.26)

(Pt)dS=h(t).
Some existence and uniquenesstheoremsfor thisclass of
BVPs are given in [Cannon and Lin (1990)] and numer-
ical methods can be found in [Ang (2000, 2002)].
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2.1.1 Conversionto Sandard Form

To convert (2.1)-(2.2) to standard form we begin by elim-
inating the mixed derivativesin (2.1)-(2.2). To do this,
we first observe that we can write

d d 2

0°u
aj——— =div(Agradu) (2.27)
,Zli; 1 0x0x;

where A isgivenin (2.3)-(2.4). Since A is symmetric, it
followsthat
A =UAUT (2.28)

where U is orthogonal and A is a diagonal matrix of
eigenvaluesof A. Thus,

div(Agradu) = div (UAU gradu)

= (grad, UAU gradu) (2.29)
where grad = (0/0x1,0/0%,...,0/0%g) and (-, -) denotes
theinner product of grad with the vector Agradu. Hence,
div(Agradu) = (U"grad, AU" gradu). (2.30)
Now let

§ = Ux (2.31)
so that

grad, = Ugrads (2.32)

where the subscriptsin (2.32) denote the variables of the
corresponding gradients. Hence,

(grad,, Agrad,u) = <grad£ ,Agrad£u> (2.33)
Thus,
62

Zi ‘a>qax, 721 087

whereA; >0, i =1,2,...,d. A further scale change asin
(2.42) converts T4 ; Aj0%u/0€? to diagonal form

(2.34)

d 62
Zian.

Similarly, the first derivative terms get mapped into the
form 59, K/du/an; for appropriate values of k!, 1 <i <
d. Thus, these transformations convert Lu to the form

(2.35)

daZ

Lu= Zlan. ZlHa—nl—cu

(2.36)
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so that solving (2.1)-(2.2) are equivalent to solving the
equation

daZ

Zlax, ZlHa)q cufaa+f

In addition to transforming the differential equation to
the simpler form (2.5)-(2.6), we need to consider trans-
forming the boundary conditionsas well.

(2.37)

First, one observes that the boundary operator for Dirich-
let boundary conditions remains unchanged. For Neu-
mann boundary conditions we need to examine how the
conormal changes when x — UTE. As above, gradyu —
Ugradgu. Assuming that localy in the neighborhood of
P that Sis given by the equation | (P) = 0O, for a suit-
ably differentiablefunction|, then the unit normal at P is
given by

B grad, |
| grad, |||

(2.38)

where ||-|| is the Euclidean norm of a vector in RY,d =
2,3. Thenintheg variables

o= o] (2.39)
Jorace |
and
B Ugrads|
Ne <‘gradal ‘> . (2.40)
Thus
au <AUgrad£I , Ugrad£u>
on = (N, grad, u) =

Jorace|
- <UTAUgrad£I,grad£u> - <Agrad£I,grad£u>

Jorac| Jorac|
(2.41)
Now make the scale transformation
ni=2z/vA,1<i<d, (2.42)
o that

<Agrad£I , gradg u> = (grady |, grad, u)

and
1/2
al 1/ al\? .
Wﬂﬂ—k(w)*ﬁ@@” nR?
(2.43)
and
|oracel|
3(1y+i(1y+i(1y”z
[ A \ong A2 \ 0n2 Az \0Nn3 ’
inR3. (2.44)

Let a (P) denote the right-hand sides of (2.43)-(2.44) so
that

da _ (grady |, grady, u) _ (grad, |, grad, u) ' || grady ||
on o (P) o (P) lgrad I
|
_ (g grachu) (P) (2.45)
Hgfadn'H
where B(P) = ||grad,!||/ o (P). Hence in the n vari-
ables,
ou ou
ane =B(P) an (2.46)

Assuming grady! # 0 the conormal boundary condition

ou/on = g(P) is equivalent to the Neumann boundary
condition

ou

an = (2.47)
whereg’ = g/B.

The remaining step in reducing (2.36)-(2.37) to standard
form is to eliminate the first order connective terms in
(2.36)-(2.37). For this we define a new dependent vari-
ablev by

v=exp(—({k',x)/2)u

where (k’,x) = T4 K'x;. It can be verified by direct dif-
ferentiation that v satisfies

(2.48)

d 92y

_ Y /
Zlaz cv aat+f

for suitablevaluesof ¢’ > 0and f'.

(2.49)
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Finally, making the scale transformationt =t /a, v(P,T)
satisfies
d 92y ov

2o Vgt

which is the standard form of (2.36)-(2.37).

(2.50)

2.1.2 Functionally Graded Materials

One drawback of Trefftz methods, as for boundary inte-
gral methods, is the difficulty of dealing with equations
with nonconstant coefficients. However, if it is possi-
ble to transform the problem to one with constant coef-
ficients then a Trefftz method may be suitable. An in-
teresting example of this occurs in some recent work on
heat transfer in functionally graded materials [Paulino,
Sutradhar and Gray (2002); Sutradhar, Paulino and Gray
(2002)]. Thisleadsin R3 to solving the equation

div (eBZgradu) - keBZ(;—? T (2.51)

Aswe show, thisequation can be transformed to the stan-
dard form of the parabolic differential equation.

From (2.51)
div (eﬁzgradu>

“(5) 5 (%) (*5)

d%u d%u d%u ou
_ pv Y zV U zV U z VY
=+ Y. +e s+ B (2.52)
so (2.51) becomes
u 0%°u 0°u _du  du
hlhe e i 2 _kZE L aB
2o T P T ket (2:53)

Now (2.53) is of the form of the convection-diffusion
equation with k1 = kp = 0 and k3 = 3 so that the trans-
formation v = e P%/2y transforms (2.53) to the standard
form (up to a scale transformation) for v.

We note that this equation can be solved using the BEM
[Paulino, Sutradhar and Gray (2002); Sutradhar, Paulino
and Gray (2002)] - however, as we shall see, our ap-
proach allows solution by meshless Trefftz methods.

2.2 Hyperbolic Equations

Using the same coordinate and variable transformations
as in the parabolic case, the general hyperbolic equation
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can be converted to the form

ou  d%u
Aw—cu=a—+b— +f.
W — CU aat +batz +
To convert (2.54) to standard form it sufficesto eliminate
the first order time derivative in (2.54). To do this we

define

(2.54)

u=e"y (2.55)
and determine a to eliminate the first order time deriva-
tive.

Thus,

ou at at OV
— =0ae’'v+e —
at TN

and

U 5 ov 0%v
— =o%e™v 4+ 2™ — e
e TRt

so (2.57) becomes

(2.56)

e (2.57)

e Av — cve™t
ov
= aoe™v+ aoe™ 5

oV 0%V
Hence, lettinga+ 2ab = 0= a = —a/2b eliminatesthe
first order derivativesin (2.58) and (2.58) takes the stan-
dard form

+ bae™ty

(2.58)

2

Au—c’v_bgT\zl+f’

for suitable ¢’ and f’. We leave the details to the reader.
Note that

(2.59)

d = c+a?/2b—a?/40? (2.60)

which may be negative evenif ¢ > 0.

3 Conversion tothe Modified Helmholtz Equation

As indicated in the Introduction, our approach to solv-
ing the time dependent equations (2.1) and (2.2) isto re-
move the time dependence and then solve the resulting
elliptic equations. We will consider three methods for
doing this; (i) the Laplace transform [Chen, Rashed and
Golberg (1998)] (ii) finite differencing in time [Ingber
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and Phan-Thien (1992); Chapko and Kress (1997)] (iii)
the Laguerre transform [Chapko and Kress (2000)]. The
application of these techniques to the IBVP for (2.5) or
(2.6) reduces them to solving a sequence of inhomoge-
neous modified Helmholtz equations which can then be
solved by a combination of the method of particular so-
lutions (MPS) and Trefftz methods.

3.1 Parabolic Equations
3.1.1 The Laplace Transformation

Let f(t) be a piece-wise continuous function of expo-
nential growth on [0, ). The Laplace transform fof f is
defined by

f(s) = /0 Te St ()t 3.1)

To solvethe IBVP for the diffusion equation, we take the
Laplace transform of u giving 0 as the solution to
AG(Rs)—si(Ps)—cd(Ps) = f(Rs)-m(P) (32
where u(P,0) = m(P). Defining A2 = s+, G satisfies

AG(P,s) —N0(Ps) =V(Ps) (33)

wherev(Ps) = f (P.s) —m(P).
Similarly, taking the Laplace transform of the boundary
condition gives

BU(Ps) =§(P.s) (34)
where

6(Rs) = [ e tgPict (35)
(where we have assumed that B is linear). Thus

0(P,s) satisfiesa BVP for the inhomogeneous modified
Helmholtz equation (3.3) with boundary condition (3.4).

For numerical purposes one solves (3.3)-(3.4) for a se-
quence of values of {s,}; and then applies a numeri-
cal inversion formulato the sequence {G(P,sp) i, [Ste-
hfest (1970); Ganesh and Sheen (2001)]. Unfortunately,
this can be problematic, as the numerical inversion of the
Laplace transform is an ill-posed problem. Despite this,
many inversion algorithmshave appeared intheliterature
and an agorithm by [Stehfest (1970)] has found some
success in the solution of diffusion problems. Recently,
some work by [Ganesh and Sheen (2001)] has shown

that it is possible to obtain a well-posed inversion algo-
rithm, but it has yet to be implemented in conjunction
with Trefftz methods. An interesting advantage of using
the Laplace transform isthat it leads to easily paralleliz-
able agorithms, as the values {G(P,sp)}; can be ob-
tained simultaneously by assigning the functionsd (P, s )
toindividual processors.

3.1.2 Time Differencing

A variety of time differencing methods has been pro-
posed to solve the IBVP for (2.5)-(2.6). Among these
are, 6 methods [Ingber, Chen and Tanski (2004); Ingber
and Phan-Thien (1992)], time-splitting [Balakrishnan,
Sureshkumar and Ramachandran (2002)] and methods
based on A-stable multi-step methods for ordinary differ-
ential equations[Langdon (1999)]. As 6 methods appear
to be the most popular, we shall restrict our discussion to
them.

For this, let ¢ > 0 and definethe mesht, = nt, n> 0. For
th <t <tn:.1, 3pproximate u(Rt) by

u(Pt) ~0u(Ptni1)+(1-6)u(Ptn), (3.6)
and

Au(Pt) ~B8Au(Ptni1) +(1—06)Au(Rty), (3.7)
where0 < 6 < 1and

Ut(P,t) ~ U(Rtn+1)—U(Rtn)' (38)

T
Using (2.5)-(2.6) in Section 2 and denoting the resulting
approximationto u(P,tn) by up, u, satisfies

0AUn; 1+ (1—0)Aup — c[BUn1+ (1—6) up)

_ Un+1—Un

+ fn (3.9)
where f, = f (P.t,) . Rearranging (3.9) gives
Aupiq— % —CUn+1
_c(l—ee)un_g_(l—gmun%_%' (3.10)
For 6 = 1 we get the backward Euler method
AUn,1— tnt1 _ Clns1 = —% + fn. (3.12)
Defining A% = ¢+ 1/, (3.11) is of the form
Ani1 —NUni1 = —% ¥, (3.12)
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which is a sequence of inhomogeneous modified
Helmholtz equations. From (2.9) we have theinitia con-
dition

Up = m(P) (3.13)
and from (2.10) the boundary conditionis
Buni1=0nr1=0(Pth1), (3.14)

so again numerically, the IBVP is reduced to solving
a sequence of BVP for the inhomogeneous modified
Helmholtz equation.

For 6 = 0.5 we get the Crank-Nicholson scheme

2Un 1

2Un
Auni1— ~Clns1 = Clp = —— — Aup + 21y,

Vo = m(P) )
Buni1=0nt1
(3.15)

Again, letting A% = ¢+ 2/1 {un} satisfies a sequence of
inhomogeneous modified Helmholtz equations.
Theoretically, one expects the Crank-Nicholson method
to be more accurate than the backward Euler method,
as the Euler approximation is O(t) while the Crank-
Nicholson method is O (12) . However, thisimproved ac-
curacy may not be achieved in practice becuase of the
lossin accuracy which occurswhen u, numerically eval-
uating the term Auy, in the right hand side of Eq. (3.15).

It is interesting to note that one can apply time-
differencing to the nonlinear diffusion equation

Jdu

Au= E+f(u). (3.16)
For example, the backward Euler method gives
AUy 1 — “”T“ - —% 4 (Un), (3.17)

which again is a sequence of inhomogeneous modified
Helmholtz equations. Numerical resultsfor thisequation
can be found in [Golberg and Chen (2001)].

3.2 Hyperbolic Equations
3.21 The Laplace Transform

The IBVP for the wave equationis
2
Au—cu= %4—& PeD,
u(R0)=m(P), u (P,0)=nm(P),
Bu(Pt)=g(Pt), P€S

(3.18)
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Taking the Laplace transform of (3.18) gives
AG(Ps)—s0(P,s) —ci(P,s)

=—sm (P)+mx(P), PeD,

and

BU(Ps)=§(Ps), PeS

(3.19)

(3.20)

Asfor the diffusion equation, (3.19)-(3.20) is solved for
a sequence of values of {sn}r'\,':l and then applying a nu-
merical inversion formulato {a(Psn) N, .

3.2.2 Time-differencing

Again we consider only the class of 8 methods. For this
again, defining u, (P) = u(Pt,) , we approximate

d%u Uni1—2Un+Un

52 = 2 (3.21)
and
Au(Pt) ~ 0AU(Pth1) + (1—8)Au(Pty). (3.22)

Again, letting u, be the approximation to un(P) =
u(Pt,), and using (3.21)-(3.22) in (3.18), u,, satisfies
0AUn; 1+ (1—0) Aup — c[BUn;1+ (1—6) up)

_ Unp1— 2Up +Un—1
= 2

+ (3.23)

and rearranging (3.23) gives
Un+1

Aupy1 — e CUn+1

~ ¢c(1-08)un B 2Un — Up_1 B (1-6)Aup N E

N 0 012 0 0’
(3.29)

Now using the approximation

Uy = S (3.25)

we get the initial conditions

up(P)=m (P), PeDUS (3.26)

ur(P)=m (P)+tm(P), PeDUS (3.27)

and the boundary conditions

BWrH_]_ (P) = gn+1(P) 5 P S S. (328)

Hence, {u,} satisfiesa BV P for aninhomogeneous mod-
ified Helmholtz equation as for the diffusion equation.

For 6 = 0.5 we obtain a second order Crank-Nicholson
method.
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3.3 ThelaguerreTransform

Although time differencing is generaly more reliable
than the Laplace transform, it suffers from the prob-
lem of being unable to obtain high order accuracy and
the overall convergence rate is usually limited by this
property. Hence, it is desirable to have a transform
method which does not suffer from the instability prob-
lem of the Laplace transform. A solution to thisproblem,
the Laguerre transform, has recently been proposed by
[Chapko and Kress (2000)] for use in conjunction with
boundary integral methods. However, the method is ap-
plicable for use with Trefftz methods as we show next.
We begin with the parabolic case.

We begin by defining the normalized Laguerre polyno-
mials[Chapko and Kress (2000)].

Ln():_erﬁ( _) n:O71,2,...

It follows immediately that {L,} satisfy the recurrence
relation

(3.29)

ni1=Ln—Ln (3.30)
whichin turnimpliesthat
n-1
L, =— Z Lm. (3.30)
m=0

By Leibniz rule using (3.29) and (3.31), it followsthat

Ln(0)=1, L/, (0)= —n, n>0. (3.32)
The Laguerre polynomiasform a compl ete orthonormal
system with respect to the inner product
(f,q) = /Ome‘rf () g(r)dr (333)
in the space of rea-valued functions in L?(]0,®)).

Hence, any function f in L2 ([0, )) can be expanded in
aseries

8

f: <f’La>Ln
n=0

(3.34)

Choosing a positive constant k, (3.34) can be scaled into
the form

=K' faln(kr)
nZonn

(3.35)

where
fn:/ e XLy (r) f(r)dr.
0

For abounded and continuousdly differentiable function f
the Laguerre coefficients f/, of the derivative f’ are given
by [Chapko and Kress (2000)]

(3.36)

n
fl=—1(0)+k Z fm, N> 0. (3.37)
m=0
Also, the coefficients of the second derivative f” are

given by [Chapko and Kress (2000)]

n
fi=—f(0)+k(n+1)+k* Y (n—m+1)fm, n>0.
m=0

(3.39)

Using (3.38), we obtain the following theorem.

Theorem 3.1 Assume that u(P,t) is a bounded, twice
continuously differentiabl e sol ution to the diffusion equa-
tion (3.18), with bounded first and second derivatives.
Then the Laguerre coefficients of u

Un (P) = /Om e ML, (k) u(Pt) dt (3.39)

satisfy the sequence of equations

Aup — CUp = — P)+k§um+fn,n20 (3.40)
m=0

where

o= /Ome"‘th(kt) f(PL)dt (3.41)

and boundary conditions

Bun = O (3.42)

where

gn(P)—/Ome‘kth(kt)g(Rt)dt, n>0. (343)

Proof. Taking the Laguerre transform of both sides of
(3.18) gives

/m e ML, (kt) [Au(Pt) — cu(Pt)] dt

—/ —kta“ (Pt) Ly (kt dt+/ e M (Pt)L, (kt)dt.
(3.44)
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Now by definition of the Laguerre coefficients and the
differentiability of u, theleft hand side of (3.44) becomes

Aup — CUp,. (3.45)

From (3.37) the right hand side of (3.44) becomes

n
—u(P0)+k Z Un+ T (3.46)
m=0
It also follows from the initia condition that u(P,0) =
m(P) so that (3.46) becomes

n
—m(P) +k Z Un+ fn (3-47)
m=0

and combining (3.45) and (3.47) gives (3.40).

For (3.39), take the Laguerre transform of the boundary
condition Bu = g to get (3.39).

Now rewriting (3.40) we see that u,, satisfy
n-1
m=0
so that {un} satisfies a sequence of inhomogeneous mod-
ified Helmholtz equations.

A drawback of this method is that it may be necessary
to use fairly large numbers of terms (n > 20 [Chapko
and Kress (2000)]) to get good convergence and this re-
quires storing many terms to obtain the approximations.
Further work is planned to determine the viability of this
approach. Last, we note that in the Chapko-Kress paper
they require zero initial values and zero source terms for
their method to work. Also, their methodology seems, at
present to be applicable only to problemsin R 2, whereas
our methodology can be used both in R? and R3.

For the hyperbolic case the Laguerre coefficients u, of u
can be shown to satisfy

Aup — CUp

= Z Bn—mUm— M (P)
m=0

+[K(n+1)+1]my (P)+ fo (P) (3.49)
where
Bn=K(n+1)+k n>0 (3.50)
with boundary conditions
Bu,=0n, n>0. (3.51)

This can be proved using (3.37) and (3.38). We leave the
detailsto the reader.
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4 The Trefftz Method

Until relatively recently, Trefftz methods had been lim-
ited to solving homogeneous linear elliptic equations.
However, extensive research over the past decade on the
numerical evaluation of particular solutions for eliptic
operators has made it possible to extend this classical
method to solve inhomogeneous elliptic, time-dependent
and nonlinear equations. Aswe have seen, solving time-
dependent PDEs requires solving a set of inhomoge-
neous Helmholtz equations. Hence, we consider bound-
ary value problemsfor
Lu=Au—N°u=f. (4.1)
To solve (4.1) by a Trefftz method, we begin by letting
up be a particular solutionto (4.1); i.e., up solves
Lup=f (4.2
but up does not necessarily satisfy the boundary condi-
tions.

Then

V=U—Up (4.3
satisfies

Lv=0, (4.4)
Bv = g— Buj. (4.5)

Assuming up isknown, wethen need to solve (4.4)-(4.5).

In the Trefftz method, thisis done asfollows: we assume
that {vn}n_o is acomplete basis of solutionsto Lv = 0.
That is, there exist constants {an}r'}':(, , such that

N

VN =) anVn (4.6)
n=0
convergesinnormtov. Thatis,
N
V— Z)anvn — 0, N — oo, 4.7
n=

where ||-|| isasuitablenorm onthe solutionset {Lv = 0} .
In thiscase, wetry to determine

N
N = ZoanVn
n=

(4.8
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which provides a good approximation to the solution of
the BVP. Since

Lwn =0, (4.9)

we need only satisfy the boundary conditions. Since
thereisonly afinite number of unknowns, we will not be
able to satisfy the boundary condition exactly, but only
approximately. Over the years, the following three pri-
mary methods have been proposed for doing this; (i) col-
location, (ii) least squares, and (iii) Galerkin’s method.

In collocation we choose N points { P; } on Sand set

(3o

which implies that

=g(P;))—Bup(P), 1< j <N (4.10)

N

ZlakBVk(Pj) =g(P)—Bup(P)), 1< j<N. (411
If (4.11) has a unique solution, then

Un = VN +Up (4.12)
is an approximate solutionto the BVP

Lu(P) = f (P), PeD, (4.13)
Bu(P)=g(P),PeS (4.14)

Unfortunately, little seems to be known theoretically
about the solvability of (4.11) and the convergence of
{un} to u. Despitethis, the collocation method has been
used extensively during the past more than seventy years
[Trefftz (1926)-Reutskiy (2002)]. In addition, the ma-
trix

Ac=[Bvw(P)], 1<j<N,1<k<N (4.15)

is generaly ill-conditioned, so care must be taken when
solving (4.11). We shall return to this matter later in Sec-
tion 6.

In the method of |east squares, one choosesM > N points
{P }:.‘/':1 on Sand defines

g(P}) +Bup (P))]? (4.16)

Q="> Bw(P)—

s

]

The coefficients {ay} _, in this case are chosen by min-
imizing Q with respect to {ax}\_, . Thus, differentiating

11

Qwith respect to {ay}\r_; , these coefficients are obtained
by solving

ggko 1<k<N, (4.17)
givinga = (a1, ay,...,an)" asthesolutionto
AlALa=ALb (4.18)
where
AL=[Bw(Pj)], 1<k<N,1<j<M, (4.19)
and
b =1[g(P1)—Bup(P1),g(P2)

~BUp (P2) g (Pi) —BUp (Pu)] " (4.20)

A variant of this approach occurs when the basis func-
tionsvy depend on some additional parameters {a k}:(:l'
Then the optimal values of {ay}{_; and {a}}_, are ob-
tained by solving

0Q
X _0.1<k<N 4.21
5 0,1<k<N, (4.21)
0Q
i 4 1<k<lI 4.22
30 0,1< , (4.22)

We will return to thisin Section 6.1.

Asfor collocation, one expects the equations (4.18) to be
ill-conditioned, so it is generally preferable to solve the
minimization problem directly without solving the nor-
mal equations (4.18).

41 Galerkin’sMethod

In Galerkin's method [Bergman and Herriot (1961,
1965)], we choose some inner product (-, -) for functions
on Sand then set theresidual

rn = Bvy —g+Bup (4.23)

orthogonal to the basis elements {vi}p_; . In this case,
{ax}r_, are determined by solving

<BVN—g—|-BUp,Vk> =0,1<k<N. (4.24)
To obtain an appropriate inner product, we use an argu-
ment anal ogous to that introduced by Bergman for solv-

ing Laplace's equation [Bergman and Herriot (1961)].
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ForL=A-c,c>0,Lu=0andLv=0,wedefine

d 9u av
(UV)p = /[Zla x +cuv|dv,d=2,3. (4.25)

If X isthe set of solutionsto Lv = 0O, then (u,v) 5 isan
inner product on X.

Obviously, (-, ) issymmetric and bilinear and

wilo - [ [ig(g_;):cuz

S0 (U,u)p = 0« u= 0. We now show that (u,v)p is
equivalent io an inner product on the boundary values of
functionsin X.

dv >0,d=2,3,

(4.26)

For this consider

, ov. ov ov) . 1
div(ugradv) = d|v< R 6_x2’u@> ,inR®  (4.27)
and
div (ugradv) = d|v< : :—V> ,inR? (4.28)
Now,
div(ugragv)

L0 (W), (v, 0 (v
- 6X1 6X1 6x2 ax2 6X3 6X3

3 du [ ov
=Y — (= | +udy, inR3 4.29
i;axi <6xi> (429)
and
2 ou )
div(ugradv) = Zla— (—) +UAV, in R (4.30)
Since Av = v,
d 9u [ av
div(ugradv) = Zlax. ( >+cuv d=23 (4.31)
S0
(V) = / div (ugradv) dV. (4.32)
D

By the divergence theorem,

/ div(ugradv)dV = / (ugradv) - ndS (4.33)

D s
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where n isthe unit outward normal on S. But

ov
gradv-n = an

is the normal derivative of v. Hence, it follows from
(4.32) and (4.33) that

(4.34)

(UV)p = /S Ug—;]/dSE (UV)g (4.35)
Similarly,
(UV)s= g“ds (4.36)

It now followsfrom the fact that (u,Vv) 5 isan inner prod-
uct that (-, -) g isan inner product on the boundary values
of functionsin X.

Using thisinner product, (4.24) becomes

(B —g+Bup,Vk)g =0, 1 <K< N. (4.37)
Sincew = ¥ ajBvj, (4.37) gives
Z ajB(Vj,Vk)g = (g—BuUp,Vk)g, 1<K<N.  (4.39)

Now supposethat we have Dirichlet boundary conditions
on u, then, Bvy = vy s0 (4.38) becomes

pd

ai <Vj7Vk>S: (4.39)

1

<g_ Bup7Vk>S7 1 < k < N.

If{v}

Ac = [(vj,v)], 1< j,k<N

are linearly independent, then the matrix

(4.40)

isa Gram matrix. Hence, it is positive definite, and so it
isinvertible.
For Neumann boundary conditions, Bu = du/on and in
this case
ovj ov
) _kds
sdn on
so this matrlx will be invertible provided the derivatives

{6v,/6n} ., are linearly independent. Similarly, we
can eﬂabllsh invertability for Robin boundary conditions
provideda (P) >0,P e S

As a conseguence, the Galerkin equations (4.24) have
a unigue solution, in contrast to collocation and least
sguares, where no such theorem is known.

(BVj,Vk)g = (4.41)
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A further observation is that, if the bases are chosen
so that [(Bvj,vk)] is the identity matrix, then obvi-
ously it will not be ill-conditioned. Generally, we expect
Galerkin's method to be better conditioned than either
collocation or least squares.

Although Galerkin’s method appears to have better theo-
retical propertiesthan either collocation or least squares,
there are some problems in its implementation because
of the need to evaluate the integrals (Bvj,vk)g and
(g—Bup,Vk)g,1 < j,k<N.

InR?, if Sisasmooth closed curve, thisgenerally can be
done by using the trapezoida rule, which was done by
Bergman in [Bergman and Herriot (1961)].

However, if Sisasurfacein R3, thisisamuch more dif-
ficult problem. If Shas asimple shape, such as a sphere
or a cube, then standard integration rules can be used
to do this efficiently [Golberg and Chen (1996); Stroud
(1971)]. More generdly, if Scan be decomposed into a
finite union of simple shapes, then the integrals can be
decomposed into afinite sum of standard integrals. More
generaly, this may have to be done by a triangulation
scheme as used in the BEM [Golberg and Chen (1996)].
However, the resulting method should still be less com-
putationally complex than the BEM, since al integrals
are non-singular.

5 Particular Solutions

Over the past 20 years extensive research has been done
on the numerical evaluation of particular solutions of
elliptic operators spurred by the work of [Nardini and
Brebbia (1982)], [Mayo (1984, 1992)], [McKenney,
Greengard and Mayo (1995)], and [Atkinson (1985)]. In
general, these methods fall into two distinct classes, di-
rect methods which approximate asolutionto Lup = f by
some numerical method, and the indirect approach found
inthe Dual Reciprocity Method (DRM) [Partridge, Breb-
biaand Wrobel (1992); Nardini and Brebbia (1982)].

In the DRM the source term f in Aup — A%up = f isap-
proximated as

axd (5.1)

Mz

f~f=

k=1

where {¢k}|§':1 isan appropriate set of basis functions.
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Then we define

N
U= § a 52
p k; Wk (5.2)

where {Wi}r_, solve

AP — NP = . (5.3)

Generally, it is best to have analytic expressionsfor .
By linearity,

Al = f, (5.4)

so we may regard Up, as an approximate particular solu-
tion. Note that in this approach G, generally does not ap-
proximate an exact particular solution of Aup —A2up = f
[Golberg, Chen, Bowman and Power (1998)].

We begin our discussion by considering some direct ap-
proaches and then devel op the DRM approach in detail.

5.1 Numerical Integration

Asiswell known, aparticular solution of Aup, —A2up = f
isgiven by [Partridge, Brebbiaand Wrobel (1992)]

u(P)= [ GRQN f(QdV (55)

where G (P, Q; A) isthe fundamental solution of the oper-
ator A— A2, and G(P,Q;\) isasolutionto
AG(PQA) —A*G(RQA)=58(P—Q) (5.6)

where 6(P — Q) is the Dirac delta function. It is known
that

GRQA) = 5-Ko(Ar), inRZ. (5.7
and
6PN = 2= 2P inge 58)

wherer = ||P— Q)| is the Euclidean distance between P
and Q and Kq isthe Bessel function of the third kind of
order zero.

In general, the integral in (5.5) cannot be evaluated an-
alytically and some form of numerical integration needs
to be used. Thisisnot straightforwardsince G (P, Q; ) is
singular and D can have an arbitrary shape. This gener-
ally requiresafinite element approach where D is decom-
posed into trianglesin R 2 and tetrahedrain R3. Then the
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integral is approximated by a sum of integrals over each
element. If D is simply connected, then one can use a
fanning decompositionas shownin Figure 5.1 [Partridge,
Brebbiaand Wrobel (1992)].

Figure 5.1: Fanning decomposition

In this approach the elements are centered at the singular
point P = Q and then polar coordinates are introduced in
each element to weaken the singularity. If D is multiply
connected, a more complex approach must be used.

Inthe BEM this technique has been assumed to be more
complex than the DRM approach. However, some recent
work by [Ingber, Mammoli and Brown (2001)] com-
bines numerical integration with multipole acceleration
to obtain amore efficient version of thistechnique. Some
numerical experiments indicate that it may be more effi-
cient than the DRM under certain circumstances. How-
ever, the accuracy of the method is limited by the ac-
curacy of the boundary approximation needed to do the
numerical integration which is generally not of high or-
der. Since Trefftz methods are generally spectrally con-
vergent for smooth data, this method may not be suitable
for use with these methods.

5.2 Atkinson’sMethod

A somewhat simpler numerical integration method was
proposed by [Atkinson (1985)] for Poisson’s equation
but can be easily extended to Helmholtz-type equations.

In this method we assume that the source term f can be
extended smoothly outside of the domain D to a domain
D D D. Then

us(P) = [[GRQIN) f(QdV

is also a particular solution of Aup —A2up = f. If D is
chosen as an ellipse in R? or an elipsoid in R3, then a
simple coordinate transformation converts (5.9) toaform
which can be evaluated by standard numerical integration
rules.

(5.9)
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53 The DRM

Inthe DRM avariety of bases can be used to approximate
the sources terms. Among these are: radia basis func-
tions (RBFs), [Golberg, Muleshkov, Chen and Cheng
(2003); Muleshkov, Golberg and Chen (1999); Golberg,
Chen and Ganesh (2000); Chen, Golberg, Ganesh and
Cheng (2002)] polynomials or trigonometric functions
[Li and Chen (2004)], and a number of numerical meth-
ods can be used, such as interpolation, least squares or
approximation methods. In this paper, we focus on in-
terpolation and approximation methods [Li and Chen
(2004)].

To use polynomial or trigonometric bases, we need to be
abletoextend f smoothly toadomain D D D asinAtkin-
son’s method. For RBFs no such extension is necessary.
We begin with this approach.

Definition 5.1 Let ¢ : [0,0) — R be a continuous func-
tion. Let {P; }:.\':1 be N distinct pointsinRY,d = 2,3. A
function of the form

f(P)=

N
.Zaiq’(HP—PiH)erm(P) (5.10)

J:

where |- is the Euclidean norm on RY and py is a
polynomial of degree mis called a radial basis function
(RBF).

As indicated previously, to use RBFs to find particular
solutionswe approximate f by aRBF and then we obtain
an approximate particular solution as

N

Up (P) = -Zlajqjj (P)+Xm(P) (5.11)
=

where

Ay~ N =6, (P). ¢;(P) =0 ([P-R[) (512

and

AXm—A*Xm = Pm- (5.13)

Because it is generaly more efficient humerically to
solve (5.12)-(5.13) analytically, this limits the choice of
RBFs one can use. In R?, one can use thin plate and
polyharmonic splines [Muleshkov, Golberg and Chen
(1999)], whilein R3 one can use splinesand Wendland's
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compactly supported radial basis functions (CS-RBFs)
[Wenland (1995)]. It isalso possibleto useinverse mul-
tiquadrics and Gaussians. We begin with splines.

InIR? asplineisof theform [Duchon (1976, 1978); Pow-
el (1992)]

o (r) =

and pn, isapolynomial of degree m=n. For n= 1 these
are the thin plate splines (TPS)

r®logr, n>1 (5.14)

oY (r) =r?logr (5.15)
and
p1 = ax+by+c. (5.16)

In R3 the splines are of the form [Duchon (1976)]
¢[n} (r) _ r.2n—1’

and pm, isapolynomial withm=n. For n= 1, these are
the TPS

o1t (r) =r
with

n>1, (5.17)

(5.18)

p1 = ax—+by+cz+d. (5.19)

The importance of splines is that they can provide in-
terpolatory apprOX|mat|ons to f for very general sets of
interpol ation points {PJ } inRY. For example, inR? if

{P},

{{a } =18 b,c} satisfying the interpolation conditions

are not collinear, then there is a unique solution

N
> ;[P — A *log ([P — A} +axc-+ byt
=1

— f(P),1<k<N, (5.20)

(5.21)

% _

wherePk (X, Yk), L<K<N.
InR3, if {P,}
solutlon{{a,}

2 3

=1
— f(R), 1<k<N,

SPRe

an %_

are not coplanar, then there isa unique

i—1» &b,c,d} tothe equations

pd

(|[P; — Px||) + ax + byx +cz+d

(5.22)

15

N N

=Y ayi= az=0 (5.23)
=1 =1

(%, Vi Zk) , L< k< N.

In addition, the TPS are optimal interpolantsin the sense
that they minimize the semi-norm [Duchon (1976)]

QLY

where B, =

an

2
d [o%f

/R d gl (a—sz> av, d=2.3 (5.24)

For higher order splines we assume that {PJ} isain-

solvent set of pointsfor polynomia interpolation and let
{be )}y, be abasis for Py, the set of polynomials of de-
gee <n(lp= (“*d) d = 2,3 is the dimension of P,).
Then there is a unique solution to the interpol ation equa-
tions

pd

(1P~ ) +pn (R) = F(R). 1<K <N,
=1
(5.25)
and
N
ajb| (Pj) =0, 1<I<l,. (5.26)

1

J

In general, the accuracy of the spline approximation in-
creases asthe order n of the splineincreases and the num-
ber N of interpolation points increases. In fact, if ||-||,
denotes the L2 norm of functions on D, it is known that
[Duchon (1978)]

|- f],<cn" (5.27)

where

h=sup min_ [|[P—-Q|| (5.28)
peRrd Qe{P;}

isthe ‘mesh width’ of the points {P,} and cisacon-

stant independent of h.

However, as n increases and h decreases the matrix
A of the linear system (5.25)-(5.26) becomes more ill-
conditioned. In fact it follows from [Li and Golberg
(2003); Schaback (1995)] that
~ch™"

cond (A) (5.29)
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where again ¢ does not depend on h. Hence, finding the
appropriate trade-off between the order of spline and the
number of interpolation points is not obvious. As can
be seen from Table 5.1 the complexity of the particular
solution increases as the order n increases so generally
we have found that it is preferable to use splines of mod-
erate order. In our work, n < 4 has given good results
[Muleshkov, Golberg and Chen (1999)]. Increasing the
number of interpolation points can then be used to in-
crease the accuracy of theinterpolation[Duchon (1978);
Schaback (1995)]. Some authors have also found that
increasing the degree of polynomial m> nin (5.25) can
also improve the accuracy of the approximation [Ingber,
Chen and Tanski (2004)].

Having obtained the spline approximation f to f we now
consider finding the particular solutions ;,1 < j <N
and xn. For y; we use the fact that ¢ ; is the fundamental
solution of theiterated Laplacian A". That is,

Al =3(P—Py). (5.30)

Hence, applying A" to (5.12), we find that ; satisfies

A" (A=A y;=0,P#P;, 1< j<N. (5.31)

Since ¢E”] isradially symmetric, ); can be chosen to be
radially symmetric as well. Hence, defining Y (r) as the
solutionto

A (A =AY =0,r1>0, (5.32)
where A, istheradial part of the Laplacian A, i.e.,

1d /rdu) . 5
Aru_Fa (W)’ in R~ (5.33)
and

1d /rdu\ . _,
Aru_r—Za (W)’ inR” (5.34)
then
Wi =y(P-PR), 1<j<N. (5.35)

Note that (5.32) isa (2n+ 2)-th order ordinary differen-
tial equation. Since A, and A, — A% commute, it follows
that

Y=u+v (5.36)
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where

A2u—N2u=0, (5.37)
and

AV =0. (5.38)

Using the fact that A, — A? is a Bessel operator and A"
is essentially an Euler operator [Derrick and Grossman
(1976)], it was shown in [Muleshkov, Golberg and Chen
(1999)] that

Y(r)

n+1 n+1
= Alo(Ar) +BKo (A1) + 3 ar®2logr + 3 dr®?
=] =]

(5.39)
where
[(2n)11]?
12
[(2k—2)!1]
n /1
dk_ckzk<—_),1§ k<n, inR? (5.42)
=\

where lg and Kq are Bessel functions of the second and
third kinds of order zero respectively, and

(2N =2x4x6x---x2k k> 1.

Also,

W(r) (5.43)
(—=1)™ (2n)! no(2n) r-l

- [ A2n+2 cosh(Ar) + kZO (2K)! A2n-2k+2”

inRRS.

Since A is arbitrary in (5.39), we choose it to be zero.

Moreover, for computational purposes, it is more conve-

nient to use the forms

Y(r)

- % - x 2 jas 2k—2
=B ¢or-—-B —rtlogr+ ) dir
kZO k:;rl [(2K)172 k;

(5.44)
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in R2 and
> (2n+1 rEx o
kz (k1)1 WA inR>. (5.45)
=N+

These expressions show that ) is C2"1 in R? and ana-
lyticin R3.

To find X, the most straightforward way isto decompose
Pn &

= i ax"y" K inR? (5.46)

K=0

and

Pn = e m pXy"2’, inR3 (5.47)
0<k+m+p<n

and then finding the solution by to

(A2 =A%) b =xy"  0<k<n (5.48)

inRR? and

(82 —N) bmp =XYy"2?, 0< k+m+p<n (549

in R?. This can be done by the method of unde-
termined coefficients [Golberg, Muleshkov, Chen and
Cheng (2003); Muleshkov, Chen, Golberg and Cheng
(2000)], and an explicit solution will be given in Section
5.6. In [Muleshkov, Golberg and Chen (1999)] another
formulawas given without proof. Because this approach
can be generalized to other operators, we give a deriva-
tion here.

Suppose now that p isapolynomial of degree mand con-
sider solving

~Nup=p (5.50)

where L isalinear differential operator with constant co-
efficients. From (5.50)

(L=A)up=p (5.51)
where | istheidentity operator. Then formally,

-1 1 L\ !
up=(L—MI) " p= -3z <| —ﬁ> p. (5.52)

Expanding (I —L/A?) “Lin ageometric series gives

(%) -5,(%)

(5.53)
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so that
12 Lkp

Up = — A2 Z))\Zk'

Since p isapolynomial of degree m, there existsan inte-
ger j suchthat Lkp= 0,k > j. Thus,

(5.54)

j Lk
Up = — )\2 Z))\Zk

iswell defined and can easily be shown to satisfy Lup —
ANu, = p. LettingL = A,

(5.55)

j Akp

-> N2i2 (5.56)
K=0

isa particular solution for Aup —A2u, = p. Thisformula

agrees with the one given in [Muleshkov, Golberg and
Chen (1999)].

As an example suppose ¢ isa TPS, then p = p; and
(5.56) gives

Up = —p1/A? (5.57)

since Akpy =0, k> 1.

5.4 Kansa's Method

As can be seen from Table 5.1, the particular solutions
become increasingly complex as the order of splinesin-
creases. As a consequence, it is interesting to consider
other techniques that may be less analytically compli-
cated. One way of doing thisis to use Kansa's method
[Kansa (1990a, 1990b)]. Here, we proceed as follows.

Let ¢; be aRBF and define

¢ =Ly;. (5.58)
Now approximate f by ¢, 1 < j < N. Then
N
= Z ajb; (5.59)
=1

where f can be obtained by interpolation as for splines.
Define

~

p =) ajy; (5.60)

Mz

J:
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Table5.1 Particular Solutions and the Values of Order n

¢ 7
r’logr 4
g —57[Ko(Ar) +logr] — —=— 5, r>0
4 4
3 Y +109(A/2)] — 57, r=0
relogr (16 .\ 8% 96
“logr —F[Ko(Ar)Jrlogr]—T(ﬁJrr )_V_F’ >0
4 9
35 V+109(A/2)] - 35, r=0
2304 r’logr (576 36r°
—W[Ko()\r)ﬂogr]—)\—zg <V+T+r4>
6 12r2 (40 ,\ 4224
rloar ‘7r<ﬁ‘f>‘73" >0
2304 4224
T[\H—IOQO\/Z)]—T, =0
147456 r’logr /36864 2304r° 64r*
—=——— [Ko(Ar) +logr] — ( )
A0 [ A2 26 A4 A2
r8logr r? (39936 1344r 4\ 307200
I U S VA R R
147456 307200
T[\H—IOQ()\/Z)]—T, r=0
14745600 r’logr (3686400 230400r?
e (Ko (Ar) +logr] — 2 TR
+6400r4 s - r? (4730880  180480r2 N 2880r2 206
ri%logr A4 A4 A6 A4 A2
33669120
-, r>0
14745600 33669120
T[Y—HOQO\/Z)]_Ta r=0

In Table 5.1, y ~ 0.5772156649015328, which is known as Euler’s constant.

(5.61)

So, Uy is an approximate particular solutionto Lu, = f.

For this method to be mathematically correct, it is neces-
sary that the interpolation problem

f(R), 1<k<N (5.62)

be uniquely solvable. Unfortunately, a number of au-
thors have used this approach without guaranteeing this
property. However, thereisanumber of cases where this
can be proved, in particular, when ¢ is a positive definite
RBF.

Definition 5.2 Let ¢ be a RBF. We say that ¢ is positive
definiteif and only if for every subset of points {P; }'j\':l
inRY the matrices

Ao = [B(IR—R[)]. 1< jk=N. (569

are positive definite in the usua sensein linear algebra.

Since positive definite matrices are invertible, the inter-
polation equations (5.58) will have a unique solution.
Now, if Y is a positive definite RBF, it follows from
Bochner’s theorem [Bochner (1959)] and the fact that
A — A2 is a negative definite operator that ¢ = Ly is a
negative definite RBF. In this case, the interpolation ma-
trix in (5.63) is negative definite, so again the interpola-
tion problem has a unique solution. Fortunately, there is
anumber of well known positive definite RBFs. Among
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these are, the inverse multiquadratics (IMQs)

~1/2

o(r) = (r?+c?) (5.64)
and Gaussians
Y (r) =exp(—cr?) (5.65)

and Wendland's CS-RBFs to be discussed in the follow-
ing section.

One drawback to this approach is that, to the best of
our knowledge, the approximation properties of ¢ =
(A—A?)  appear not to be known. However, for IMQs
and Gaussians, we expect rapid convergence, if f is
smooth.

5.5 Compactly Supported RBFs

Since splines, IMQs, and Gaussians are globally sup-
ported, the linear systems of equations needed for in-
terpolation are dense and can be quite large and ill-
conditioned, particularly for problemsin R3. As a con-
sequence, for many years, the ‘holy grail’ of the RBF
community was to find a class of compactly supported
RBFs (CS-RBFs) for which the interpolation problem
was uniquely solvable. This problem was first solved in
the mid-1990's by [Wu (1995)] and [Wenland (1995)].
For our purposes, we concentrate on Wendland’'s CS-
RBFs. They are of theform

_ [ @-nip(), 0<r<i,
o(r)= { 0. o1, (5.66)
where

1-r, 0<r<1,

(1-r .= { 0. .y (5.67)
and p(r) isapolynomial of suitable degree.
InRY, d = 2,3, thefirst four CS-RBFs are
¢1(r)=(1-n73, (5.68)
d2(r) = (1-n)% (4r +1), (5.69)
d3(r)=(1—r)% (35r2+18r +3), (5.70)
and
da(r)=(1-r1)% (32r34+25r2 4 8r +1). (5.71)

Since Wendland's CS-RBFs are positive definite, the in-

terpolation problem isuniquely solvablefor arbitrary sets
_ : ) N

of interpolation points {P; },_,
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For efficient interpolation, it is necessary to consider the
scaled RBFs

¢a(r)=(1-r/a)} p(r/a)

with support in [0, a] rather than [0,1]. For a given set
of interpolation points, the interpolation matrices A 4 are
sparse with the sparsenessincreasing as a decreases. On
the other hand, the approximation accuracy increases
as a increases. Hence, it is important to find the opti-
mal trade-off between sparsity and accuracy. At present,
the best approach to this problem seems to be the use
of multilevel methods as discussed in [Golberg, Chen
and Ganesh (2000); Chen, Golberg, Ganesh and Cheng
(2002); Floater and Iske (1996)]. We refer the reader
there for details.

(5.72)

To compute particular solutionsto (A—A?)up = ¢ two
methods have been discussed, Kansa's method in R?
and R3, and a direct method in R® [Golberg, Chen
and Ganesh (2000); Chen, Golberg, Ganesh and Cheng
(2002)]. We discuss this method next.

As noted for splines, it suffices to find the solution to

> dPa
r2dr (r dLI:) Na=0(r/)

and then
;i (
To solve (5.73), we make the change of variable

W=y,
which satisfies
dw B

@z w=r¢(r/a)=v(r).

Since p(r) isa piecewise polynomial, we have
d2
ar2
and
d’w
ar2
Hence, it follows from the elementary theory of ordi-

nary differential equations that [Derrick and Grossman
(1976)]

w(r) = {

(5.73)

P)=a(|[P-PR[]), 1< j<N. (5.74)

(5.75)

(5.76)

—Mw=r(1-r/a)"p(r/a),0<r<a,  (5.77)

—Nw=0,r>a (5.78)

Ae M +BeM +q(r),0<r<a,

CeM4+DeM,r>a, (5.79)
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where q(r) is a particular solution to w— A?w = v(r)
which can be chosen to be a polynomial and can be found
in principle by the method of undetermined coefficients.
Unfortunately, this quickly leads to very messy algebra,
so we have found it advantageous to do this with sym-
bolic ordinary differential equation (ODE) solvers, such
asthosein MAPLE® or MATHEMATICA®

The four constants (A,B,C and D) in (5.79) can be cho-
sen , so that P is C? on [0,0). For this, it was shown
in [Golberg, Chen and Ganesh (2000)] that it sufficesto
choosew (0) = 0. In fact, we have the following theorem
[Golberg, Chen and Ganesh (2000)].

Theorem 5.1 Let w be a solution of (5.78) with w(0) =
0. Then Y, = w/r istwice continuoudly differentiable at
r =0 with

% [A2W (0) + p(0)] .

LIJa(O) =

W2 (0) = (5.80)

Furthermore, Y, satisfies (5.78) in the sense of limr —
ot.

Proof. Theorem 5.1 is proved by repeated use of
I'Hospital’s rule.  See [Golberg, Chen and Ganesh
(2000)] for details.

From Theorem 5.1 and (5.79), Y, isC? atr = 0 if

A+B-+q(0) =0. (5.81)

Moreover, one can show that i isC? atr = aif

Ae 231 BeM = Ce 2+ DeM,
—Ahe M+ B+ ¢ (a) = —Che 4 DAL
(5.82)

Since there are four constants in (5.81)-(5.82) and three
equations, one constant can be chosen arbitrarily. We
choose D = 0 and then (5.81)-(5.82) can be solved to give

[Ae M1 Bettq(r)] /r, O0<r<a,
Ce™/r, r>a

A[2B+q(0)]+d (0), r=0,
Wa(r) = {

(5.83)
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Note that (5.83) holds for al CS-RBFs and only q(r)
changes.

As examples we have the values g1, gz, gz corresponding
to ¢i (r), i =1,2,3in (5.68)-(5.70) [Golberg, Chen and
Ganesh (2000)].

4 (/1 6 2 , 1 4
ql(r)‘%‘(ﬁﬂw)”m “ a2
430 2880 1800 60 1
%)=~ g3 ~ oo T <a4s‘5 T ?) '
240 1440\ , (300 10\ 4
_<@+ﬁ> <0(4s4+ 232>r
20
_ <@+

120\ , 15 5 4
as(r) =

0(432r 052
322560 7741440

A8q5 A0q7

<168 3 2116800

Ma2 A2 A8q6

12700800 25200)

AO0g8  A6g4
(3870720 161280) (2

A8a”? A6ad

+ )\20(2 Mot ABa8  A6q6

<13400 322560) (4

4200 2116800 352800) 3

+

Aa® Aéa?
210 |, 17640 105840) 5

)\20(4 Aab Aéq8
10752) 6 (2520

A2ab

420\ -
Aa? A4a8 '

+<)\2a5+
192 4 35
Aa?  AZa®

5.6 Polynomial Particular Solutions

Aswe have aready seen in the course of finding partic-
ular solution for (A—A?)up = f using splines, it was
necessary to abtain polynomial particular solutions as
well. Since polynomials are generally better understood
mathematically than RBFs, it is reasonable to consider
obtaining particular solutionsusing only polynomial ap-
proximations to f. This was first done by [Atkinson
(1985)] for Poisson’s equation and generalized for the
Helmholtz and modified Helmholtz equations in [Gol-
berg, Muleshkov, Chen and Cheng (2003); Muleshkov,
Chen, Golberg and Cheng (2000)]. Related work can be
foundin [Janssen (1997)].
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In general, one cannot interpolate a multidimensional
polynomial on arbitrary scattered data, so a different
approach is necessary than for RBF interpolation [Gol-
berg and Chen (1996); Golberg, Muleshkov, Chen and
Cheng (2003)]. In [Golberg, Muleshkov, Chen and
Cheng (2003)] a standard tensor product of Chebyshev
polynomials was used. To do this the physical domain
is embedded in a rectangle [a, b] x [c,d] in R? and in a
paralelepiped [a, b] x [c,d] x [e, f] in R3. Then f is ap-
proximated in R? by the interpolant [Boyd (2001)]

f(XY) = dmn (X,Y)
nom 2x—b—a 2y—d-—c
-3,2.57 (%5 ) (35 )
(5.84)
where
4 28 fxy) P T
a“_nméjéqzopzo oCq Cos<n>cos< )’
(5.85)
and
xp_cos<§£>,0§p§n,
yq = Cos E) ) OS q < m, (586)
To=Cn=2C=11<i<n-1,
Co=Cmn=2Cj=11<j<m-1,

with asimilar expression f (X,Y,2) ~ Qnmp (X, Y, 2) inR3.
Here T; (x) and T; (y) are the Chevyshev polynomials of
thefirst kind of degreesi, j respectively.

Then gmn (X,y) and dnmp (X, Y, 2) are expanded in mono-
mial form

n m
Onm(X,Y) = Za br X'y® (5.87)
s=0r=
and
On,mp (X,,2) Zj%%brstx yszt (5.88)

and particular solutions u;s and uys; are calculated for
the monomial terms x"y® or X'ySZ. Then particular solu-
tionsare given by

n m
= ZO Zobr,sur,s
&0r=

(5.89)

21

and

(XY,2) (5.90)

AR A

The particular solutionsu, s and uy st are given by thefol-
lowing theorems [Golberg, Muleshkov, Chen and Cheng
(2003); Muleshkov, Chen, Golberg and Cheng (2000)].

Theorem 5.2 Let e € {—1,1}. A particular solution for

AP +eN’P=x"" m>0,n>0, (5.91)

isgiven by

(m/2][n/2] ¢ £(—¢

vy =3 5

)k+| (k—i—l)'m'n'xm_Zky”_ZI
AZKF2H2011 (m—2K)! (n—21)! -~
(5.92)

Proof. See [Golberg, Muleshkov, Chen and Cheng
(2003)].

Theorem 5.3 A particular solutionfor (e € {—1,1})

Ap+eN* P =xPyIZ p>0,g>0,r >0, (5.93)
isgiven by
lu(x Y, )
k+| Inlalr! p—2j\a—2kr—2l
s( ) (J+k+|).p.q.r.x Ve (5.94)

A2i+2+2421 1 (p—2))! (g —2K)! (r —21)!

Proof. See [Golberg, Muleshkov, Chen and Cheng
(2003)].

In [Golberg, Muleshkov, Chen and Cheng (2003)] the
monomial expressionswere obtained using the symbolic
code MATHEMATICA and the code for this can be
found in[Golberg, Muleshkov, Chen and Cheng (2003)].
However, this led to some programming difficulties as
the MATHEMATICA code had to be trandated into
FORTRAN for numerical purposes.
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A more direct approach can be based on the fact that
[Abramovitz and Stegun (1965)]

n V2 (m—2m-—1)!
Tn(x) = (5)% m! (n—2m)!

0

(2x)"2 (5.95)

and then the monomial expansion can be obtained by di-
rect multiplication of these expressions. Thisis currently
under investigation.

5.7 Trigonometric Particular Solutions

As we have aready seen, using RBFs or polynomials
to obtain particular solutionsfor the modified Helmholtz
operator requires some analytic ingenuity and can lead to
complex expressions if high order approximation to the
source term f isrequired. On the other hand, if trigono-
metric expansions are used, then calculating the particu-
lar solutionis straightforward, but obtaining rapidly con-
vergent expansions requires some effort.

A number of authors have used this approach, but in
our opinion the method of approximation has not al-
ways been mathematically correct [Reutskiy (2002)].
Hence, we follow an approach first proposed by [Atkin-
son (1985)] for Poisson’sequation but somewhat simpli-
fied compared to his[Li and Chen (2004)].

As for polynomial approximations we embed D into a
rectangle D in R? or a box D in R3. For simplicity we
assumeD = [—n,n]d , d =2, 3. We then obtain a smooth
extension of f to D and then compute a rapidly conver-
gent Fourier series approximationto f.

Let L? ([—n,rr]d> be the space of complex square-

integrable functions on [—m,1% and define the inner
product of f and g by

1

f g = / f(X)g(x)dV. 5.96
(1.0 = o | e 100800 (5.96)
To approximate (f, g) we use the quadraturerule
1 Tt _ [Tt
(1.9)y = f(M)a () (597)
" (zn)djezZ"(n) n n

for any integer n > 1 where

Zd (n) - {J = (jlv"'v J|) € Zd;_ng jlv"'v jd < n_l}-
(5.98)

CMC, vol.1, no.1, pp.1-37, 2004

Now any f € L? ([—n,n]d> can be expanded into a
Fourier series

f) =3 (f.e)ex

kezd

(5.99)

where k = (kg,k,....kg) and k -x = T, xk. Using
(5.97) the Fourier expansion (5.99) can be approximated
by the hyperinterplation operator [Sloan (1995); Gol-
berg and Bowman (1998)]

Lnf (x) = () ekx

[kllo<n-1

(5.100)

where ||K||., = maxi<i<q |k |.

Approximation results for L are given in [Li and Chen
(2004)]. To describe these, let

Sy = span {€%%; k||, <n—1}. (5.101)
Then,
ILafllz < 11l (5.102)
where
1 2
1l =— [ IfFav. (5109
(Vem)” /l-mn
[flle=sup [f], (5.104)
xe[-mr
and
- < inf ||f—¥]. 1
If = Lafllp < inf [T —X]| (5.105)

From thisit followsthat if f is compactly supported on
[Tt n]d and f isr timescontinuoudly differentiable, then

|f—Lnfll, <c/n". (5.106)
For our purposes, it suffices to use only the Fourier sine
seriesexpansion of f. Assumethenthat D C [0, 1] 4 (This
can alwaysbe done by simpletranslationand rescaling of
variablesif necessary). Let x be a smooth function such
that X (x) = 1, x € Dand x (x) =0, x ¢ [0,7]9. Let

fx () = fX (%)

then fy = f for x € D and fy is compactly supported in
[0,7¢. Extend fy continuously to be an odd function,
e, iy (o, —x,..)=—T(...,—x,...), 1 <1 <d.

(5.107)
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Then the Fourier seriesof fy isonly asine series, i.e.,

()= bj(fy)sin(jxa)--sin(joxa) (5.108)
i€Zq

where

Z8={i=(jviz-ig): 121 ja>1}  (5.100)

and

5 () = 0OSn(i0) - (o) V.
(5.110)

Correspondingly, the hyperinterpolation operator takes
the form

Ln (fy) = [bj (fy)],sin(jixa)---sin(jaxn) (5.111)
i€z,

whereZd | ={1<j1,j2,...,ja<n—1} and

[bl (fX)} n— < fX (X) ,S.n(j]_X]_) PR Sn(JdXd)>n (5112)
Using Ly (fx) to approximate the sourceterm f, it can be
verified by direct differentiation that the corresponding
particular solutionsare given by

Op (Xa y)

[0 (500 <t v aim( iy i w2
=- <X sn(jx)sin(jzy), inR
1<j1,]2<n-1 J%—i_ J%—I_}\Z

(5.113)

and

Ap (Xa y? Z)

1<1,j2,]3<n-1

[bj (fX)}n

= sin(jix)sin(jay)sin(jsz), inR3.
2524 24+ (jgsin(jzy)sin(js2)

(5.114)

Last, we point out that the hyperinterpolation operator
Ln (fy) can be calculated efficiently by using the fast
Fourier transform. Details can be found in [Li and Chen
(2004)].
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Figure6.1: D and bounded domain D

6 Trefftz Bases

Having discussed how to obtain particular solutions, we
now turn to the issue of determining appropriate Trefftz
basesfor solving the homogeneous boundary val ue prob-
lem.

Generally, Trefftz bases fall into two broad classes, F-
Trefftz bases based on fundamental solutionsfor A — A2
and T-Trefftz bases, which are usually obtained by sep-
aration of variables. T-Trefftz bases can also be gen-
erated by the application of Bergman-Vekua operators
[Bergman and Shiffer (1953); Bergman and Herriot
(1965); Vekua (1967); Melenk (1995); Melenk and
Babuska (1995)] which are discussed in Section 6.5.
Thislatter approach is interesting because it can be used
to generate bases for operators with non-constant coeffi-
cients [Bergman and Shiffer (1953); Bergman and Her-
riot (1965); Vekua (1967); Melenk (1995); Melenk and
Babuska (1995)].

6.1 The Method of Fundamental Solutions

In our work we have focussed on F-Trefftz bases giving
rise to what is usually called the method of fundamental
solutions(MFS) [Golberg and Chen (1996, 1998); Limic
(1981); Alves (2000)]. This method may be viewed as
a version of the boundary integral equation method as
shown in [Golberg and Chen (1998)]. This technique
was pioneered by [Kupradze and Aleksidze (1964)] and
was, until recently, limited to solving homogeneous el-
liptic problems.

To begin a description of the method, we assume that D
is bounded, connected and simply connected. Let D bea
bounded domain containing D as shown in Figure 6.1.

Let Sbethe boundary of D and let {Q; }';':1 be N distinct
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pointson Sand define

N
w(p) =) ajG(RQjA), PEDUS
=

(6.1)

where G(P,Qj,A) is a fundamental solution of A —
A2 Since (A—A?)G(PQj;A) = 0, P # Q, then
(A—A)w =0, Pe DUS In [Alves (2000)] it
wes shown that if {Q;}7, is dense in S then
the set {G(PQj;A)}|_, is complete in the set X =
{(8—A?)v=0}. Hence, {G(P.Qj;A)}] , isaTrefftz
basisfor X.

As noted in Section 4, the coefficients {aj}'j\':l in (6.1)
can be chosen by collocation, least squares or Galerkin's
method. In our work we have generally used collocation,
although other methods are &l so being investigated.

As shown in Section 4, for collocation we choose N
pointson Sand set

Buy () = g(R) —Bup(R), 1< k< N. (6.2
Using (6.1) in (6.2) givesthe N linear equations
N
a;BG (P, Qj;A) = g(P) —Bup(R), 1< k<N.
- (6.3)

These equations can then be solved by direct solverssuch
as Gaussian elimination. However, this requires care,
since the matrix

can be highly ill-conditioned [Schaback (1995); Kita-
gawa (1988, 1991); Ramachandran (2002)]. Generally,
the condition number of A. increases as the distance of
Sfrom Sincreases. At the same time the accuracy of
the MFS increases under these same circumstances. At
present, the optimal location of the source points is not
known but generally we have found that choosing the dis-
tance of Sfrom Sat most three times the diameter of D
seems to give good results [Golberg and Chen (1998)].
Moreover, it usually is satisfactory to choose the source
pointsuniformly distributed on acircle of radiusRin R ?
and uniformly on a sphere of radius R in R® [Golberg
and Chen (1998); Bogomolny (1985); Katsurada and
Okamoto (1996)].
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Because there is some uncertainty about the effect of the
ill-conditioning of A ¢, we have begun investigating meth-
ods to mitigate this problem. These are based on ideas
drawn from statistical analysis.

Many of these methods are based on the singular value
decomposition (SVD) of A¢. This approach wasfirst ex-
amined by [Kitagawa (1988, 1991)] for Laplace’s equa-
tion and more recently by [Ramachandran (2002)]. Here
we extend these ideas to the modified Helmholtz equa-
tion.

Asiswell-knownan N x N matrix A can be decomposed
as[Golberg and Cho (2004)]

A=UDVT (6.5)

whereU and V are orthogonal matricesand D isthe diag-
onal matrix of singular values of A. Let 14j,1 <i <N be
the singular values assumed to be ordered in decreasing
order;i.e, W > W > --- > Wy and |y are the eigenvalues
of ATA.

Using (6.5), the solution of Ax =y can be obtained as
follows. Since the columns of V span RN,

N
X = Ziaavi
i=

where {v;}\, are the columns of V. From (6.5) Av; =
Ui where u; are the columns of U. Then,

(6.6)

N N

y:Ax:i;a;Avi :i;a;piui. (6.7)

Since {u; }!\_, are orthogonal,

a = (y,ui)/W1<i<N, (6.8)

which gives

X = S M (6.9)
= Mi

as the SV D of the solution x.

This expression can be used to analyze the propagation
of error in the solutionof Ax =y. Supposey is perturbed
by a vector Ay, i.e, y — y+ Ay, then the solution x is
perturbed by

s {8y, Ui Vi ‘_">V‘ (6.10)

AX:iZi m
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S0 that

rAxH<; [y Wl ’<Z

SnceHuﬂ%:Hvﬂkzl,lsif;N,HAxHE;zEJHAyH/u.
Hence, the error ||Ay|| is magnified by 1/p;, 1 <i < N.
Since ill-conditioning is indicated by small singular val-
ues, error propagation can be reduced by dropping the
terms in (6.11) satisfying Wi < €, where € (> 0) is some
pre-assigned error value. Hence, to reduce the effect of
ill-conditioning we approximate x by

0w Y U)Vi
X_i; M

where | < € for i > M. X is called the truncated sin-
gular value decomposition (TSVD) of x. Of course, this
increases the truncation error.

XK — g <y7ui>vi
i=fr1 M

The expectationisthat if the values (y,u;) are small, the
truncation error will be small while the propagation of
round-off error is mitigated by using X instead of x.

As has been observed experimentally, the MFS has the
somewhat surprising property that the ill-conditioning
often seems to have little effect on the numerical accu-
racy of x. Asyet, there seems to be no general rigorous
explanation of thisfact. An heuristic explanation of this
fact follows.

First, notethat the solution of (6.13) isnot of primary im-

portance, rather the approximate sol ution of the boundary
value problem is. Letting

™ Hu Iy g,

(6.12)

(6.13)

=[G(PQ1).G(PQy),...G(RQN)]", PEDUS
(6.14)
w (P) =(c,x), Pe DUS (6.15)
Using the SVD of x
N ) )
m®_;@%§ﬂ. (6.16)

Assume now that p;,i > M + 1 are the small singular val-
uesof A and (c,vi) =0,i > M +1. Then

M (y,ui) (c,v;)

W@—;W’M (6.17)
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Hence, the effect of small singular values has been elim-
inated. Since we do not expect this to hold exactly, it
suggestsan aternative procedure to mitigate the effect of
the small singular values.

Write
Ny, u)

Sy,
P)=§ 2 =
) i;M/<CaVi> 2 O
Now order |oij|,1 <i < N in decreasing order and for
simplicity assume that |01| > |02| > --- > |on]. If M is
chosen such that |oj| < €,i > M, then vy is approximated
by

,PcDUS (6.18)

a(y,ui)

N (P) = ,PeDuUS (6.19)
We now expect Vi (P) to be more computationally stable

than vy (P).

Other approaches to mitigating the ill-conditioning can
be based on least squares and Galerkin methods. Be-
fore discussing this, we first examine the cause of the
ill-conditioning of A. Let

be the j-th row of A. Since G is a function of the Eu-
clidean distance ||P — Q|| between P and Q, r j depends
on the distances ||Pj — Q«||,1 < k < N, as shown in Fig.
6.2. Alsothe (j+1)-throwis

rj+1=(BG(Pj1+1,Q1),G(Pj+1,Q2),--,G(Pj+1,Qn))

(6.21)

which depends on the distances ||Pj1 — Qk||, 1 <k <N.
Now as R increases, the distance ||Pj — Qx|[,1 < k <
N and ||Pj+1 —Qk||.1 < k < N become approximately
equal. Hence, adjacent rows of A become approximately
equal and A becomes increasingly ill-conditioned. A
similar argument holds as N increases and adjacent
source points become closer together. Thus, a possi-
ble strategy for reducing ill-conditioning is to try to sat-
isfy the boundary conditions as well as possible using
a small number of source points. This suggests choos-
ing a larger number of field points {Pj }M than source
points {Q ,} and satisfying the boundary conditions,

in aleast squar% sense as indicated in Section 4.1. In
this case, we approximate v by

N
= > aG(RQ) (6:22)
k=1
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where {ac}y_, are obtained by solving

AlAla=Aly (6.23)
where

AL=[BG(P;,QA)], 1< j<M,1<k<N (6.24)
whereM > N and

y=[9(P)—Bup(P)], 1< j<M. (6.25)

r || Pj— Q||

| Pi+1—=Qx |l

Figure 6.2: Source to field point distances

Unfortunately, AT A can till be badly ill-conditioned.
Again, theill-conditioning can be mitigated by using var-
ious techniques from statistical analysis. These, as be-
fore, can be based on the SVD of AT A_. Inthiscase,
AlAL =UAUT (6.26)
where U isorthogonal and A isadiagona matrix whose
diagonal elements are the eigenvaluesof A[ A, . Typical
methods are based on Tikhonov regul arization[Tikohnov
and Arsenin (1977)] which is also known as ridge re-
gression [Golberg and Cho (2004)] in the statistical lit-
erature. Here we consider determining the regularized
solution xr by solving

Xg = argmin||A x—y||? +k||x||?, k> 0, (6.27)
where k > O isaregularization parameter.

In thiscase, xr satisfies

(ATAL+K)xr=Aly. (6.28)

For k = 0, xg satisfies (6.23). In genera, for k > O,
Al AL +Kl is better conditioned than A[ A . However,
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as k increases, the error ||x — x| increases as well. Us-
ing statistical ideas it is possible to calculate the opti-
mal value of k [Golberg and Cho (2004)]. Two of the
most popular techniques are generalized cross validation
(GCV) [Wahba (1990)] and Hansen's L-curve [Hansen
(1992)]. Again, both of these proceduresare based onthe
SVD of AT A, whichisjust the usual spectral decompo-
sition of a symmetric matrix A A,

Hence,

N (Aly,ui)
Xp = N LA
R i; W7 +k

where {12} | are the singular values of ATA_ and
Ui, 1 <i <N are the columns of U. Details of the GCV
can be found in [Wahba, Golub and Health (1979);
Wahba (1990)].

In the L-curve one plots the points

(6.29)

(1011l log|ALxR Y1) (6.30

and the resulting curve has the L shape shown in Figure
6.3.

Figure 6.3: L-curve

The optimum value of k correspondsto the “knee” of the
curve. Note that this plot can be obtained efficiently us-
ing (6.29), since it requires only the one time computa-
tion of the SVD of A|.

An alternative least squares procedure is to assume that
the source points {Qj}::':l are not fixed but are cho-
sen simultaneously with the source strengths {a}p_;
in (6.1) [Fairweather and Karageorghis (1998)]. In
this case, ||[ALx—y||? is minimized with respect to
({ak}l':'zl,{Qk}l':'ﬂ). This method is computationally
more intensive than either collocation or least squares
with fixed sources, particularly in R3. Hence, we would
generally not recommend it for use in time dependent
problems.
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6.2 Galerkin’s Method

As we pointed out in Section 4, the boundary conditions
can be satisfied using the inner product given in (4.24).
We expect this method to be more stable than colloca
tion, particularly if the basisis orthonormal as indicated
in [Bergman and Herriot (1961)].

6.3 Multiply Connected and Unbounded Domains

If D isabounded, multiply connected domain as shown
in Fig. 6.4, then sources need to be placed in the interior
of the holesin D as well in the unbounded component
of the complement of D in order to satisfy the bound-
ary conditions. In general, the interior sources should
be placed far from the interior boundaries. At present,
we are unaware of any theory which determines how to
distribute the sources between the interior and the exte-
rior domains. However, it has been found experimentally
that it is best to put most of the sources in the exterior
domain. Asfor simply connected domains, the boundary
conditions can be satisfied using either collocation, least
sguares or Galerkin’s method.

If D is simply connected and unbounded, then sources
should be placed in the bounded complement of D with
increasing accuracy usually being obtained the further
the sources are from the boundary S.

s

QT
=

Sources

Figure 6.4: Source points for a multiply connected do-
main

6.4 Singular Solutions

So far we have assumed that the solution to the boundary
value problem is smooth. However, if either the bound-
ary Sor the boundary data g isnot smooth, the solutionto
that boundary value problem can develop singularitiesin
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the neighborhood of the singular points. Since the funda-

mental solution G(P,Q;A) isC® for P # Q, the approx-
imate solution vy in (6.1) isC™ as well and we will not
obtain a good approximation to solutions which are not

C*. Thissame problem occursinthe BEM andin domain
based methods such as the FEM [Strang and Fix (1973);
Fix, Gulati and Wakoff (1973)]. How to deal with
this problem is not totally resolved. In [Karageorghis
(1992)], this problem was addressed for Laplace’s equa-
tion in 2D and [Tolley (1977)] and [Discroll (1995)]

considered this issue for the ordinary Helmholtz equa-
tion. The basic idea is to determine the asymptotic be-
havior of the solution near the singular points and then
add functions to the MFS expansion which display this
singular behavior. For example, if D is a polygon and
P € Sis avertex with interior angle a /1, then the func-
tions Ing (Ar)cos(na®), Ing (Ar)sin(nod) are solutions
to (A—A?)v = 0, where (r,6) isa polar coordinate sys-
tem centered at P. Then, in a heighborhood of P, we can
approximate v by an expression of the form

VN(P)
N M
= G(P QA Brlna (A 0
k;ak (P.Q« )+nZO (Ar) cos(naB)
M
nlna (Ar) S 0).
+n;c (Ar)sin(na®)

(6.31)

To solve the global problem the domain can be decom-
posed in such away that only one vertex occurs in each
subdomain as shown in Figure 6.5. Then, we introduce
an expansion of the form (6.31) in each subdomain D;.
Boundary conditions can be satisfied by collocation and
by requiring continuity of v and the normal derivative of
v across the element interfaces.

B

P
1 Py

Figure 6.5: Decomposition of D and subdomains
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For problemsin R3, simple analytic expressions for the
singular functions do not seem to be available so this ap-
proach does not appear to be feasible [Grisvard (1992)].
At present, in analogy with the BEM, mesh grading of
collocation points may be possible as has been done
for some 2D problemsin [Karageorghis and Fairweather
(1987)]. Asyet, no results seems to have been published
using such an approach.

6.5 T-TrefftzBases
6.5.1 BasesinRR2

We begin by assuming that D is a bounded, connected
and simply connected domain in R? and assume that the
solution to the boundary value problem

\2y—
{Av Av=0 (6:32)

Bv=g—Bup

is smooth. Assume in addition that the origin of coor-
dinates is located at the centroid of D. Introduce polar
coordinates (r, 8) withr = 0 at the centroid of D. Then it
is known that the set
{In(Ar)cosnB}}_oU{ln(Ar)sinnB},_;, (6.33)
where |, is the Bessdl function of second kind and or-
der n, is complete in the set of solutions of Av—A2v =0
[Melenk (1995); Melenk and Babuska (1995)]. Hence,
to approximate the solution to (6.32)-(6.33) we define

N N
VN = Z anln (Ar)cosnB + Z bnln (Ar)sinng. (6.34)
n=0 n=1

By definition, Avy — A%vy = 0, so we need to pick the
constants {ay}r_, and {bx}k_, to satisfy the boundary
conditionsin (6.32). Asfor the MFS, this can be done
by using either collocation, least squares or Galerkin's
method. As before, this leads one to solve a system of
2N + 1 linear equations. These equations are generally
ill-conditioned, so that methodsbased on the SV D should
be preferable to straightforward Gaussian elimination.

In contrast to the MFS, it is possible to obtain good esti-
mates of the approximation orders of the T-Trefftz bases
(6.34). This can be done by using the Bergman-Vekua
theory of integral operator [Bergman and Shiffer (1953);
Bergman and Herriot (1961, 1965); Melenk (1995); Me-
lenk and Babuska (1995)].
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The basic idea is that given a complete set of solutions
of Laplace's equation Au = 0 these can be mapped onto
acomplete set of solutionsto Av—A2v = 0. In particular,
if up(x,y) isacomplex holomorphic solutionto Av = O,
then

V (X,y) = Uo(X,Y) —/Oluo(tx,ty) %Io (Awl-t) dt
(6.35)

is a solution of Av— A?v = 0 [Bergman and Herriot
(1961, 1965); Melenk (1995); Melenk and Babuska
(1995)].

If we consider

o (x,y) €S :{1,2,222,?,...,2'“,F,...} (6.36)
wherez=x+iyandz=x—iy, thenS isacomplete set of
holomorphic solutionsto Au = 0.Then, it can be shown
that

V(Z") = cn(N) €M1, (Ar) (6.37)
and
V() =cn(A) e ™1, (Ar) (6.38)

where {c, (A)} are appropriate constants, is a complete
set of complex solutionsof Av— A2y =0, wherez=re®.
Then,

V() +V (2

In (Ar)cosnd = 26,0V (6.39)
and
In(Ar)sinng = \/(2”22:;(}\\/)(2”) (6.40)

isacomplete set of real solutionsto Av—A2v = 0.

Using classical error estimates for approximation by har-
monic polynomials, i.e., elementsin span S, and the fact
that (6.35) is a bounded operator in appropriate Banach
spaces of functions, enables oneto obtain error estimates
for approximation by the Trefftz basis (6.33). A classical
result of thistypeis given below.

Theorem 6.1 [Mergelyan (1962)] Let D C R? bea sim-
ply connected, bounded Liponitz domain with bound-
ary S Let D be such that DUSC D and assume that
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Zall

Figure6.6: D with asingle hole

f € L2 (D) isholomorphicin D. Then, there exists a har-
monic polynomial ¢ , of degree p such that

[T —dpll, <cie™P|fll,, (6.41)
and
£ = dpll,, < ce™PIf]l5, y>0, (6.42)

where ¢, and ¢, do not depend on ¢ .

Using Theorem 6.1 and the boundedness of (6.38) in L,
it followsthat if visaholomorphic solution of Av—A 2v =
0, there exists a function of the form (6.34) such that

V=Wl < C26 ™| ]|, (6.43)
and
IV =W ll,, < coe™ | f],,y>0. (6.44)

In[Melenk (1995)] and [Melenk and Babuska (1995)],
more general theorems with relaxed smoothness condi-
tionson v are given. We refer the reader there for details.

Using these results, one can obtain error estimatesfor the
Trefftz approximation vy to v provided that the coeffi-
cients {ax}k_oU {bk} 1, are chosen by using Galerkin's
method.

If D ismultiply connected, then using T-Trefftz bases be-
comes increasingly complex. For example, supposeD is
bounded with a single hole as shown in Figure 6.6 and
assume that we have a polar coordinate system with the
origin at the centroid of D1.

Then, the corresponding Trefftz basiswill contain terms
of theform

{Kn (Ar)cosnB}Ne U {Kn (Ar)sinne} R, (6.45)
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where by letting Ar = z,
Kn(2)
1/1\ " in—k=1) [/ 1,\"
-3(3) 2w (-32)
+ (=)™ N (%z) Ih(2)
a1/1\"
+(-1) 5<§Z>
2 gy (B
k;[tu( +1)+Y(n+ +1)]m (6.46)

are Bessdl functions of the third kind [Abramovitz and
Stegun  (1965)], where W(z) =T (2) /T (2) is called
the digamma function; Y (1) = —y and Y (n) = —y+
sh—ik=1forn> 2 (yisEuler'sconstant).

Generally, for each hole one needs to add corresponding
terms of theform (6.45) to the Trefftz expansion centered
at the centroids of each hole. In this regard, using T-
Trefftz bases appears to be more difficult than the MFS.

As for the MFS, care needs to be taken if the solution
has singularities either due to geometric singularities or
singularities due to the boundary data g. As there, the
best approach is to determine the asymptotic behavior of
the solution in the neighborhood of the singular points
and add singular functionsto the Trefftz expansion asfor
the MFS.

Although we have approached T-Trefftz basisfor A — A2
by Bergman-Vekua operators, the more classical ap-
proach isto observe that the basis (6.33) can be obtained
by separation of variables of Av—A?v = 0 in polar co-
ordinates. This suggests that other Trefftz bases can be
obtained by separation of variables in other coordinate
systems. In particular, if Cartesian coordinates are used,
one can look for solutionsin the form
V(X,y) = Aexp(ax+ By). (6.47)
Substituting (6.47) intoAv—A2v= 0 givesa?+B2—\2 =
0, soa?+B? = \2. Hence, (a,B) must lieonacirclewith
radiusA. If we choose

2 . 2
(ONk; Bnk) =A (cos%k,sm%k) ,0<k<N-1,

(6.48)
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then we conjecture that the set

o N-1
U U (@nkBn)
N=1 k=0

isaTrefftz basisfor Av—A%v = 0. Thisresult isknown to
be true for the ordinary Helmholtz equation Av+A2%v =0
where A in (6.48) is replaced by iA, i = —1 [Melenk
(1995); Melenk and Babuska (1995)]. We expect this
basisto be more efficient than the standard T-Trefftz and
MFS bases, since it does not require the calculation of
Bessel functions.

(6.49)

6.5.2 BasesinR3

For smplicity, we restrict our discussion to the case
where D is a bounded, connected and simply connected
domain in R3 and assume that the solution to the bound-
ary value problem (4.4)-(4.5) is smooth.

Letting (r,0,d) be spherical polar coordinatesinR 3, then
it isknown that the functions

{im(Ar) P (cosB)sin(ng) ,
im(Ar) Ph (cosB) cos(nd)},

—m<n<mm=0,12,.. (6.50)

is a Trefftz basis for solutions of Av—\2v = 0. Here,
im (Ar) isthe spherical Bessel function of the second kind
of order u and Pj,(cosB) are the associated Legendre
functions [Golberg and Chen (1996); Cheung, Jin and
Zienkiewicz (1991)]. Thus, we can obtain approximate
solutions of the form

S g amnim (Ar) P (cosB)sin(nd)
m=0n=—m
+§ g Prmnim(Ar) PR (cosB) cos(nd). (6.51)

m=0n=—m

VN (P) =

AsinR?, the constants {amy } and {bmn} are obtained by
satisfying the boundary conditions either by collocation,
least squares or Galerkin’s method.

AsinR?, thereis ageneralization of the Bergman-Vekua
theory which enables one to obtain the bases (6.50) as
theimage of harmonic polynomialsunder an appropriate
integral operator. Detailscan be foundin[Tjong (1970);
Colton (1971); Gilbert and Lo (1971)]. The complete-
ness of (6.50) can be established using this fact. How-
ever, sharp error bounds do not seem to be available asin
R,
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AsinR?, we can consider obtaining alternative bases by
separating variables in Cartesian rather than polar coor-
dinates. Hence, we look for solutionsto Av—A2v =0in
the form

v=Aexp(ax+By+yz). (6.52)

Substituting (6.52) into Av— A ?v = 0 wefind that (a, B, )
satisfy
a? 4+ B2 +y2 =2 (6.53)

so that (a,B,y) lies on a sphere of radius A in R3. As
in R2, we conjecture that if {(ax, Bk, k) }xq iS a dense
subset of this sphere, then the set
{exp (arx+ By + Yk2) -1 (6.54)

isaTrefftz basisfor Av—A2v = 0. Thissuggestschoosing

Gij:}\SinT[FjCOS%(, 0<j<n-10<k<m-1
(6.55)

ijk:)\sin%jsinz%k, 0<j<n-10<k<m-1
(6.56)
yj:)\sin%j,ogjgn—l, (n,m)>1 (6.57)

as appropriate points on the sphere of radius A to use in
(6.54). This basis should be computationally more &f-
ficient than the classical basis (6.50), since it does not
require the calculation of special functions.

7 Numerical Results

In this section, we present several numerical examples
illustrating our methodology. For simplicity, we restrict
ourselvesto the RBF spline-MFS for the diffusion equa-
tion.

Example 7.1 Consider the following parabolic equation

a—u:Athf(x,y,t)

i (7.1

inthedomain [0, 1] x [0, 1]. Theforcing term is given by

f(x,y,t) = sinxsiny(2sint + cost). (7.2)
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Theinitia and boundary conditionscorrespond to the so-
lution

u(x,y,t) = sinxsinysint. (7.3
This example was considered by Ingber and Phan-Thien
[Ingber and Phan-Thien (1992)] using a boundary ele-
ment method. To approximate the forcing term f, we
chose 48 interpolation points (see Figure 7.1) in which
32 boundary points were used as the collocation points
for the MFS. We chose polyharmonic splines of order
two (r#logr) as the basis function. To evaluate the ho-
mogeneous solution using the MFS, we chose 32 source
pointson acircle with center at (0.5,0.5) and radius 2.

1 * * * * * * * *
o9l .
0.8f * + + *

b *
0.7
06" * * * * *
0.5 *
0.4p * * * * .
0.3}

e *
0.2 * * * *
01f *

Figure 7.1: Thedistribution of collocation pointsfor the
RBF.

To verify the effectiveness of the MFS-RBF algorithm,
we computed the errors at the point (0.8,0.8). The graph
of u(0.8,0.8,t), for 0 <t < 25, is shown in Figure 7.2.
The errors using T = 0.05 and T = 0.025 are shown in
Figure 7.3. Similar results were obtained at other points.
The results are highly accurate for the smaller time step
1. Increasing the number of interpolation pointsfrom the
current setting has little affect on the numerical accuracy.
The numerical results using the MFS-RBF agorithm are
superior tothosein[Ingber and Phan-Thien (1992)]. The
convergence rate of the method using different time steps
isshownin Figure 7.4.

Example 7.2 Consider the diffusion equation (7.1) with
f =0inacubicregion 0 < x1,X,%3 < 1 with unit ther-
mal conductivity and diffusivity. The boundary condi-
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Figure 7.2:
0<t<25.

Profile of the solution of u(0.8,0.8,t) for

x10~

T
—— Time Step = 0.05
Time Step =0.025

Errors

. . . .
0 5 10 ) 15 20 25
Time

Figure 7.3: The profile of errorsusingt =0.05and 1 =
0.025 &t (0.8,0.8).

tionsare given by

u(0,X2,X3,t) = 0,u(1,%2,x3,t) =1 for

0§X2,X3§1.0, t>0

a—u(xl,Xz,Oyt) = a—u(Xl,Xz,lyt) =0 for

on on
OS X1,X0 < 1.0, t> 0,

a_u(X1707 X37t) - a_u(X17 1, X37t) =0 for

on on
0< X1,X3 < 1.0, t>0.
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Figure 7.4: Convergence rate of the Euler method

The initial condition is given by u(x1,%2,X3,0) = 0 for
0 < X1,%2,X3 < 1. This problem has been considered by
[Ingber, Chen and Tanski (2004)]. It represents the 1D
problem of an insulated unit bar with initial temperature
zero whose left-hand boundary is isothermal at 0 and
whose right hand boundary is impulsively raised to one
at timet = 0. The exact solution can be determined using
separation of variablesand isgiven in [O’Neil (1999)].

The solution is discretized with 218 source points out-
side the domain (M = 218) and 343 interpolation points
(N = 343). Among them, 218 of the interpolation points
are located on the surface of the domain while the re-
maining 125 interpolation points are located in the inte-
rior of the domain. The radius of the fictitious bound-
ary is 8. In Table 7.1, PS1, PS2 and PS3 denote poly-
harmonic splinesr-1 k = 1, 2,3, respectively. In gen-
eral, theresultsget better with higher order polyharmonic
splines and reduced time steps, but thisis not alwaysthe
case. Care must be taken in either reducing the time step
or going to higher order polyharmonic splines, since the
higher-order polyharmonic splinesresult in worse condi-
tioning of the linear system associated with the particul ar
solution and smaller time steps result in worse condition-
ing (large A) of the linear system associated with the ho-
mogeneous solution. In fact, for small time steps, the
Euler implicit method (6 = 1) is more accurate than the
Crank-Nicolson method (6 = 0.5) despite the difference
in the local truncation error for the two methods. The
current results are consistent with results of [Muleshkov,
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Golberg and Chen (1999)] who showed that improve-
ment in accuracy can be obtained by using higher order
polyharmonic splines for elliptic boundary value prob-
lems. Further, they show limited improvement for time-
dependent problems presumably because the dominant
error was caused by the time-stepping scheme.

Table7.1: Absolute maximum errorsatt = 1 using poly-
harmonic splines.

0 A\ PS1 pPSs2 PS3
001 100E-2 283E-3 138E-2
0.005 157E-2 277E—-3 240E-3

05 0002 292E—2 247E-3 1.96E-3
0.001 4.56E-2 250E—-3 overflow
001 173E-2 139E-2 138E-2
0.005 1.35E-2 7.20E—-3 7.07E-3

1 0.002 184E-2 331E-3 302E-3
0.001 286E—-2 226E—-3 1.76E—3

8 Conclusions

We have shown how to solve a class of second order
time dependent PDEs in a mesh-free manner by con-
verting IBVPs for these equations to solving a sequence
of BVPs for inhomogeneous modified Helmholtz equa-
tions. These BVPs were solved by a combination of
the method of particular solutions and Trefftz methods.
The key ingredient in this approach is the need to com-
pute a particular solution of theinhomogeneous modified
Helmholtz equation. To do this, we focus on the DRM
approach to obtain particular solutions based on radial
basis function, polynomial or Fourier series approxima
tionsto the source term. The resulting homogenous BV P
is then solved by either the MFS or the classical Trefftz
bases obtained by separation of variables. The relation
of these bases to the Bergman-Vekua integral operator
method is discussed.

To satisfy the boundary conditions we considered using
collocation, least squares and Galerkin’smethod. Anim-
portant issue here is the problem of mitigating the ill-
conditioning of the resulting linear system. Here, we
proposed a number of techniques from the statistical lit-
erature based primarily on the SVD of the boundary ma-
trices. This topic will be further investigated in future
work. Some numerical results are presented using the
MFS-RBF agorithm showing the accuracy of the method
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for both two dimensional and three dimensiona prob-
lemsfor transient heat conduction.

Although this approach appears quite promising, much
remains to be done. One needs to determine op-
timal combinations of time removal schemes, source
term approximation and Trefftz bases. Mitigating ill-
conditioning and obtaining error estimateswill be the fo-
cus of future work. Finally, exploiting additional struc-
ture such as axisymmetry isan important topic for future
research.
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