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Trefftz Methods for Time Dependent Partial Differential Equations

Hokwon A. Cho1, M. A. Golberg2, A. S. Muleshkov1 and Xin Li1

Abstract: In this paper we present a mesh-free ap-
proach to numerically solving a class of second order
time dependent partial differential equations which in-
clude equations of parabolic, hyperbolic and parabolic-
hyperbolic types. For numerical purposes, a variety of
transformations is used to convert these equations to stan-
dard reaction-diffusion and wave equation forms. To
solve initial boundary value problems for these equa-
tions, the time dependence is removed by either the
Laplace or the Laguerre transform or time differencing,
which converts the problem into one of solving a se-
quence of boundary value problems for inhomogeneous
modified Helmholtz equations. These boundary value
problems are then solved by a combination of the method
of particular solutions and Trefftz methods. To do this, a
variety of techniques is proposed for numerically com-
puting a particular solution for the inhomogeneous mod-
ified Helmholtz equation. Here, we focus on the Dual
Reciprocity Method where the source term is approxi-
mated by radial basis functions, polynomial or trigono-
metric functions. Analytic particular solutions are pre-
sented for each of these approximations. The Trefftz
method is then used to solve the resulting homogenous
equation obtained after the approximate particular solu-
tion is subtracted off. Two types of Trefftz bases are con-
sidered, F-Trefftz bases based on the fundamental solu-
tion of the modified Helmholtz equation, and T-Trefftz
bases based on separation of variables solutions. Var-
ious techniques for satisfying the boundary conditions
are considered, and a discussion is given of techniques
for mitigating the ill-conditioning of the resulting linear
systems. Finally, some numerical results are presented il-
lustrating the accuracy and efficacy of this methodology.
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1 Introduction

Traditional methods for numerically solving partial dif-
ferential equations (PDEs) such as the finite difference,
finite element and boundary element methods all require
meshing some or all of the solution domain [Strang and
Fix (1973); Partridge, Brebbia and Wrobel (1992); Gol-
berg and Chen (1996)]. This can be extremely time con-
suming, particularly for problems in R

3and can severely
limit the attainable accuracy because meshing the do-
main boundary can usually be done with only limited ac-
curacy [Strang and Fix (1973); Partridge, Brebbia and
Wrobel (1992); Golberg and Chen (1996)]. Conse-
quently, over the past decade there has been increasing
interest in developing meshless methods which elimi-
nate or substantially reduce the need for domain mesh-
ing. Among these methods are the element-free Galerkin
method [Belytschko and Lu (1994)], reproducing ker-
nel particle methods [Liu, Jun, Li, Adee and Belytschko
(1995)], the local Petrov-Galerkin method and methods
based on radial basis function approximations [Kansa
(1990a, 1990b)]. With the exception of the latter, all
the other methods require at least some meshing for nu-
merical integration, hence are more realistically mesh re-
duced, rather than mesh-free methods. Interestingly, for
many years during the 50’s, 60’s and 70’s a popular class
of methods was the Trefftz methods introduced in 1926
[Trefftz (1926)] which are based on approximating so-
lutions by generalized Fourier series. These methods are
truly meshless, since they can be implemented without
either domain or surface meshing. Unfortunately, their
use was limited largely to the solution of homogeneous
elliptic equations such as the Laplace, Helmholtz and bi-
harmonic equations. However, in recent years, extensive
research on the numerical evaluation of particular solu-
tions to PDEs based on early research of [Nardini and
Brebbia (1982)] and [Atkinson (1985)] has enabled one
to extend these methods to solve inhomogeneous ellip-
tic [Fairweather and Karageorghis (1998); Golberg and
Chen (1998)], nonlinear [Golberg and Chen (1998)] and
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time dependent PDEs [Golberg and Chen (1998)]. It is
the purpose of this paper to present a meshless approach
to solving a class of second order time-dependent PDEs
based on a combination of the method of particular solu-
tions and the Trefftz method.

The paper is composed of eight sections. In Section 2 we
present boundary value problems (BVPs) for a class of
second order PDEs which contains parabolic, hyperbolic
and parabolic-hyperbolic equations. By using a variety
transformations we show how to reduce these equations
to familiar reaction-diffusion and wave equation forms.
In addition to standard Dirichlet, Neumann and mixed
boundary conditions, we consider a class of recently dis-
cussed nonlocal boundary conditions and the solution of
boundary value problems for functionally graded mate-
rials [Paulino, Sutradhar and Gray (2002); Sutradhar,
Paulino and Gray (2002)].

In Section 3 we show how to reduce the solution of the
standard time dependent PDEs to solving BVPs for the
inhomogeneous modified Helmholtz equation. We dis-
cuss three methods for doing this; the Laplace transform
[Moridis (1987)], various time-differencing schemes [Su
and Tabarrok (1997); Ingber and Phan-Thien (1992);
Chapko and Kress (1997)] and the Laguerre transform
[Chapko and Kress (2000)].

In Section 4 we introduce the method of particular so-
lutions (MPS) to reduce the inhomogeneous modified
Helmholtz equation to BVPs for the homogeneous mod-
ified Helmholtz equation. Here we assume that the nec-
essary particular solutions are known and focus on the
general Trefftz method for solving homogeneous BVPs.
In particular, we concentrate on methods for satisfying
the boundary conditions. A variety of methods is dis-
cussed; collocation, least squares and Galerkin’s method,
with Galerkin’s method appearing to be the most reliable.

In Section 5 we turn to the issue of numerically evaluat-
ing particular solutions to the inhomogeneous modified
Helmholtz equation. Two general approaches are dis-
cussed. The direct numerical calculation of the classical
domain integral [Partridge, Brebbia and Wrobel (1992);
Golberg and Chen (1996)] and the currently more popu-
lar Dual Reciprocity Method (DRM) [Partridge, Brebbia
and Wrobel (1992); Golberg and Chen (1996)]. Here,
the source term is approximated by an appropriate set of
basis functions and then an approximate particular so-
lution is obtained by analytically solving the modified
Helmholtz equation with the approximate source term.

Three types of approximations are considered: radial ba-
sis functions (RBFs), polynomials [Golberg, Muleshkov,
Chen and Cheng (2003); Muleshkov, Chen, Golberg and
Cheng (2000)] and trigonometric approximations [Li
and Chen (2004)]. Advantages and disadvantages are
discussed.

In Section 6 we return to a discussion of specific Tr-
efftz bases. Two general classes of bases are consid-
ered, F-Trefftz bases based on fundamental solutions of
the modified Helmholtz equation [Golberg, Muleshkov,
Chen and Cheng (2003)] and T-Trefftz bases which
are generally obtained by separation of variables in po-
lar and Cartesian coordinate systems [Cheung, Jin and
Zienkiewicz (1991); Discroll (1995); Melenk (1995);
Melenk and Babus̆ka (1995)]. For two dimensional
problems we show how Bergman-Vekua operators can
be used to obtain error estimates for T-Trefftz bases
[Bergman and Herriot (1965); Vekua (1967); Melenk
(1995); Melenk and Babus̆ka (1995)].

In Section 7 we present some numerical examples to
show the efficacy and efficiency of our approach. We
conclude the paper with some discussion of future re-
search in this area.

2 Boundary Value Problems for Time Dependent
PDEs

In this paper we consider the numerical solution of ini-
tial boundary value problems for a class of second order
partial differential equations (PDEs) of the form
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and
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where

A1 = [ai j] , 1 ≤ i, j ≤ 2 (2.3)

and

A2 = [ai j] , 1 ≤ i, j ≤ 3 (2.4)
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are constant, symmetric, positive definite matrices and
(a,b,c) are non-negative constants.

If b = 0, a > 0 then (2.1)-(2.2) are parabolic equations
and if b > 0, a ≥ 0 then (2.1)-(2.2) are called hyper-
bolic equations. For numerical purposes, it is conve-
nient to transform (2.1)-(2.2) into a standard form. For
parabolic equations, the standard form is the reaction-
diffusion equation,

∂2u

∂x2
1

+
∂2u

∂x2
2

−cu =
∂u
∂t

+ f in R
2 (2.5)

and

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

−cu =
∂u
∂t

+ f in R
3. (2.6)

As usual, we will denote the left hand sides of (2.5)-(2.6)
as ∆u−cu where ∆ is the Laplacian operator.

For hyperbolic equations the standard form is,

∆u−cu =
∂2u
∂t2 + f in R

d, d = 2,3 (2.7)

the classical wave equation. We consider these cases sep-
arately.

2.1 Parabolic Equations

Although one can consider boundary value problems for
both bounded and unbounded domains, in this paper we
will focus primarily on problems in bounded domains.

Hence, let D be a bounded domain in R
d , d = 2,3 with

boundary S. Denoting the left hand side of (2.1)-(2.2) by
Lu, the parabolic equation takes the form

Lu = a
∂u
∂t

+ f . (2.8)

In the initial boundary value problem (IBVP) one speci-
fies, the initial condition

u(P,0) = m(P) , P ∈ D∪S (2.9)

and boundary conditions

Bu(P, t) = g(P, t) , P ∈ S (2.10)

where B is an appropriate boundary operator. The most
common forms of boundary conditions are, Dirichlet
boundary conditions,

Bu = u; (2.11)

Neumann boundary conditions where

Bu =
∂u
∂nc

(2.12)

and ∂u/∂nc is the conormal derivative of u. Here,

∂u
∂nc

= gradu ·nc (2.13)

where nc is the conormal at P ∈ S. Specifically, if A is as
in (2.3)-(2.4) then

nc = An =

(
d

∑
j=1

ai jn j

)
, 1 ≤ i ≤ d (2.14)

where n = (ni) , 1 ≤ i ≤ d is the unit outward normal at
P ∈ S.

Mixed Boundary Conditions:

Here, we assume that S = S1 ∪ S2, S1 ∩ S2 = /0 and one
specifies Dirichlet boundary conditions on S 1 and Neu-
mann boundary conditions on S2. If g1 and g2 are the cor-
responding boundary conditions, and w(P) = 1, P ∈ S 1

and w(P) = 0, P ∈ S2, then these boundary conditions
can be written in the form

wu+(1−w)
∂u
∂nc

= wg1 +(1−w)g2. (2.15)

In fact, if P∈ S1, then w = 1, 1−w = 0 so (2.15) becomes

u = g1, (2.16)

while if P ∈ S2, w = 0, 1−w = 1 and (2.15) becomes

∂u
∂nc

= g2. (2.17)

Hence, letting g = wg1 +(1−w)g2 (2.15) can be written
as

Bu = g (2.18)

where Bu = wu+(1−w)∂u/∂nc.

One can also consider boundary conditions of the third
kind - Robin boundary conditions

∂u
∂nc

= α (P)u+g (2.19)

where

Bu =
∂u
∂nc

−α (P)u. (2.20)
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One can also consider non-linear boundary conditions,
such as radiation boundary conditions

∂u
∂nc

= αu4. (2.21)

However, in this paper we will only deal with the case
where B is linear.

Under appropriate smoothness conditions on S, f and g
and compatibility conditions on the initial and boundary
data, one can show that (2.8)-(2.10) have unique solu-
tions. For details one can consult [Friedman (1964)].
We will assume that these conditions are met in the re-
mainder of the paper.

Although (2.8)-(2.10) represent classical IBVPs, in re-
cent years a number of authors have considered non-local
conservation conditions on u of the form [Cannon and
Lin (1990); Ang (2002)]∫

D
u(P, t)dV = h(t) . (2.22)

When (2.8) is in the standard form (2.5)-(2.6) with c =
f = 0, this condition can be converted to a non-local
boundary condition on S as follows.

Assuming h in (2.22) is differentiable, we differentiate
(2.22) giving∫

D

∂
∂t

u(P, t)dV = h′ (t) . (2.23)

From (2.5)-(2.6) ∂u/∂t = ∆u so that∫
D

∆u(P, t)dV = h′ (t) =
∫

D
divgradu(P, t)dV. (2.24)

Now, by using the divergence theorem,

∫
D

divgradu(P, t)dV

=
∫

S
n ·gradu(P, t)dS =

∫
S

∂u
∂n

(P, t)dS. (2.25)

Hence, the conservation condition (2.22) is equivalent to
the non-local boundary condition∫

S

∂u
∂n

(P, t)dS = h′ (t) . (2.26)

Some existence and uniqueness theorems for this class of
BVPs are given in [Cannon and Lin (1990)] and numer-
ical methods can be found in [Ang (2000, 2002)].

2.1.1 Conversion to Standard Form

To convert (2.1)-(2.2) to standard form we begin by elim-
inating the mixed derivatives in (2.1)-(2.2). To do this,
we first observe that we can write

d

∑
j=1

d

∑
i=1

ai j
∂2u

∂xi∂x j
= div(Agradu) (2.27)

where A is given in (2.3)-(2.4). Since A is symmetric, it
follows that

A = UΛΛΛUT (2.28)

where U is orthogonal and ΛΛΛ is a diagonal matrix of
eigenvalues of A. Thus,

div(Agradu) = div
(
UΛΛΛUT gradu

)
=
〈
grad,UΛΛΛUT gradu

〉
(2.29)

where grad ≡ (∂/∂x1,∂/∂x1, ...,∂/∂xd) and 〈·, ·〉 denotes
the inner product of grad with the vector Agradu. Hence,

div(Agradu) =
〈
UT grad,ΛΛΛUT gradu

〉
. (2.30)

Now let

ξ = Ux (2.31)

so that

gradx = Ugradξξξ (2.32)

where the subscripts in (2.32) denote the variables of the
corresponding gradients. Hence,

〈gradx,Agradxu〉=
〈

gradξξξ ,ΛΛΛgradξξξu
〉

(2.33)

Thus,

d

∑
j=1

d

∑
i=1

ai j
∂2u

∂xi∂x j
=

d

∑
i=1

λi
∂2u

∂ξ2
i

(2.34)

where λi > 0, i = 1,2, ...,d. A further scale change as in
(2.42) converts ∑d

i=1 λi∂2u/∂ξ2
i to diagonal form

d

∑
i=1

∂2u

∂η2
i

. (2.35)

Similarly, the first derivative terms get mapped into the
form ∑d

i=1 k′i∂u/∂ηi for appropriate values of k ′i, 1 ≤ i ≤
d. Thus, these transformations convert Lu to the form

Lu =
d

∑
i=1

∂2u

∂η2
i

+
d

∑
i=1

k′i
∂u
∂ηi

−cu (2.36)
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so that solving (2.1)-(2.2) are equivalent to solving the
equation

d

∑
i=1

∂2u

∂x2
i

+
d

∑
i=1

k′i
∂u
∂xi

−cu = a
∂u
∂t

+ f . (2.37)

In addition to transforming the differential equation to
the simpler form (2.5)-(2.6), we need to consider trans-
forming the boundary conditions as well.

First, one observes that the boundary operator for Dirich-
let boundary conditions remains unchanged. For Neu-
mann boundary conditions we need to examine how the
conormal changes when x → UTξξξ. As above, gradxu →
Ugradξξξu. Assuming that locally in the neighborhood of
P that S is given by the equation l (P) = 0, for a suit-
ably differentiable function l, then the unit normal at P is
given by

n =
gradxl

‖gradxl‖ (2.38)

where ‖·‖ is the Euclidean norm of a vector in R
d,d =

2,3. Then in the ξ variables

n =
Ugradξξξ l∥∥∥gradξξξl

∥∥∥ (2.39)

and

nc = A


 Ugradξξξl∥∥∥gradξξξ l

∥∥∥

 . (2.40)

Thus,

∂u
∂nc

= 〈nc,gradxu〉=

〈
AUgradξξξl,Ugradξξξu

〉
∥∥∥gradξξξ l

∥∥∥
=

〈
UT AUgradξξξ l,gradξξξu

〉
∥∥∥gradξξξl

∥∥∥ =

〈
ΛΛΛgradξξξ l,gradξξξu

〉
∥∥∥gradξξξl

∥∥∥
(2.41)

Now make the scale transformation

ηi = zi/
√

λi, 1 ≤ i ≤ d, (2.42)

so that〈
ΛΛΛgradξξξl,gradξξξu

〉
=
〈
gradηηηl,gradηηηu

〉

and

∥∥∥gradξξξl
∥∥∥=

[
1
λ1

(
∂l

∂η1

)2

+
1
λ2

(
∂l

∂η2

)2
]1/2

, in R
2

(2.43)

and∥∥∥gradξξξl
∥∥∥

=

[
1
λ1

(
∂l

∂η1

)2

+
1
λ2

(
∂l

∂η2

)2

+
1
λ3

(
∂l

∂η3

)2
]1/2

,

in R
3. (2.44)

Let α (P) denote the right-hand sides of (2.43)-(2.44) so
that

∂a
∂nc

=

〈
gradηηηl,gradηηηu

〉
α (P)

=

〈
gradηηη l,gradηηηu

〉
α (P)

·
∥∥gradηηηl

∥∥∥∥gradηηηl
∥∥

=

〈
gradηηηl,gradηηηu

〉∥∥gradηηηl
∥∥ ·β(P) (2.45)

where β(P) =
∥∥gradηηηl

∥∥/α (P) . Hence in the η vari-
ables,

∂u
∂nc

= β(P)
∂u
∂n

. (2.46)

Assuming gradηηηl 
= 0 the conormal boundary condition
∂u/∂nc = g(P) is equivalent to the Neumann boundary
condition

∂u
∂n

= g′ (2.47)

where g′ = g/β.

The remaining step in reducing (2.36)-(2.37) to standard
form is to eliminate the first order connective terms in
(2.36)-(2.37). For this we define a new dependent vari-
able v by

v = exp
(−〈k′,x

〉
/2
)

u (2.48)

where 〈k′,x〉= ∑d
i=1 k′ixi. It can be verified by direct dif-

ferentiation that v satisfies

d

∑
i=1

∂2v

∂x2
i

−c′v = a
∂v
∂t

+ f ′ (2.49)

for suitable values of c′ > 0 and f ′.
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Finally, making the scale transformation τ = t/a, v〈P,τ〉
satisfies

d

∑
i=1

∂2v

∂x2
i

−c′v =
∂v
∂τ

+ f ′ (2.50)

which is the standard form of (2.36)-(2.37).

2.1.2 Functionally Graded Materials

One drawback of Trefftz methods, as for boundary inte-
gral methods, is the difficulty of dealing with equations
with nonconstant coefficients. However, if it is possi-
ble to transform the problem to one with constant coef-
ficients then a Trefftz method may be suitable. An in-
teresting example of this occurs in some recent work on
heat transfer in functionally graded materials [Paulino,
Sutradhar and Gray (2002); Sutradhar, Paulino and Gray
(2002)]. This leads in R

3 to solving the equation

div
(

eβzgradu
)

= keβz ∂u
∂t

+ f . (2.51)

As we show, this equation can be transformed to the stan-
dard form of the parabolic differential equation.

From (2.51)

div
(

eβzgradu
)

=
∂
∂x

(
eβz ∂u

∂x

)
+

∂
∂y

(
eβz ∂u

∂y

)
+

∂
∂z

(
eβz ∂u

∂z

)

= eβz ∂2u
∂x2 +eβz ∂2u

∂y2 +eβz ∂2u
∂z2 +βeβz ∂u

∂z
(2.52)

so (2.51) becomes

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 +β

∂u
∂z

= k
∂u
∂t

+e−βz f . (2.53)

Now (2.53) is of the form of the convection-diffusion
equation with k1 = k2 = 0 and k3 = β so that the trans-
formation v = e−βz/2u transforms (2.53) to the standard
form (up to a scale transformation) for v.

We note that this equation can be solved using the BEM
[Paulino, Sutradhar and Gray (2002); Sutradhar, Paulino
and Gray (2002)] - however, as we shall see, our ap-
proach allows solution by meshless Trefftz methods.

2.2 Hyperbolic Equations

Using the same coordinate and variable transformations
as in the parabolic case, the general hyperbolic equation

can be converted to the form

∆w−cu = a
∂u
∂t

+b
∂2u
∂t2 + f . (2.54)

To convert (2.54) to standard form it suffices to eliminate
the first order time derivative in (2.54). To do this we
define

u = eαt v (2.55)

and determine α to eliminate the first order time deriva-
tive.

Thus,

∂u
∂t

= αeαt v+eαt ∂v
∂t

(2.56)

and

∂2u
∂t2 = α2eαt v+2eαt ∂v

∂t
+eαt ∂2v

∂t2 . (2.57)

so (2.57) becomes

eαt∆v−cveαt

= aαeαt v+aαeαt ∂v
∂t

+bα2eαtv

+2αb
∂v
∂t

+beαt ∂2v
∂t2 + f . (2.58)

Hence, letting a+2αb = 0 ⇒ α = −a/2b eliminates the
first order derivatives in (2.58) and (2.58) takes the stan-
dard form

∆u−c′v = b
∂2v
∂t2 + f ′ (2.59)

for suitable c′ and f ′. We leave the details to the reader.
Note that

c′ = c+a2/2b−a2/4b2 (2.60)

which may be negative even if c > 0.

3 Conversion to the Modified Helmholtz Equation

As indicated in the Introduction, our approach to solv-
ing the time dependent equations (2.1) and (2.2) is to re-
move the time dependence and then solve the resulting
elliptic equations. We will consider three methods for
doing this; (i) the Laplace transform [Chen, Rashed and
Golberg (1998)] (ii) finite differencing in time [Ingber
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and Phan-Thien (1992); Chapko and Kress (1997)] (iii)
the Laguerre transform [Chapko and Kress (2000)]. The
application of these techniques to the IBVP for (2.5) or
(2.6) reduces them to solving a sequence of inhomoge-
neous modified Helmholtz equations which can then be
solved by a combination of the method of particular so-
lutions (MPS) and Trefftz methods.

3.1 Parabolic Equations

3.1.1 The Laplace Transformation

Let f (t) be a piece-wise continuous function of expo-
nential growth on [0,∞) . The Laplace transform f̂ of f is
defined by

f̂ (s) =
∫ ∞

0
e−st f (t)dt. (3.1)

To solve the IBVP for the diffusion equation, we take the
Laplace transform of u giving û as the solution to

∆û(P, s)− sû(P, s)−cû(P, s) = f̂ (P, s)−m(P) (3.2)

where u(P,0) = m(P) . Defining λ2 = s+c, û satisfies

∆û(P, s)−λ2û(P, s) = v(P, s) (3.3)

where v(P, s) = f̂ (P, s)−m(P) .

Similarly, taking the Laplace transform of the boundary
condition gives

Bû(P, s) = ĝ(P, s) (3.4)

where

ĝ(P, s) =
∫ ∞

0
e−stg(P, t)dt (3.5)

(where we have assumed that B is linear). Thus
û(P, s) satisfies a BVP for the inhomogeneous modified
Helmholtz equation (3.3) with boundary condition (3.4).

For numerical purposes one solves (3.3)-(3.4) for a se-
quence of values of {sn}m

n=1 and then applies a numeri-
cal inversion formula to the sequence {û(P, sn)}m

n=1 [Ste-
hfest (1970); Ganesh and Sheen (2001)]. Unfortunately,
this can be problematic, as the numerical inversion of the
Laplace transform is an ill-posed problem. Despite this,
many inversion algorithms have appeared in the literature
and an algorithm by [Stehfest (1970)] has found some
success in the solution of diffusion problems. Recently,
some work by [Ganesh and Sheen (2001)] has shown

that it is possible to obtain a well-posed inversion algo-
rithm, but it has yet to be implemented in conjunction
with Trefftz methods. An interesting advantage of using
the Laplace transform is that it leads to easily paralleliz-
able algorithms, as the values {û(P, sn)}m

n=1 can be ob-
tained simultaneously by assigning the functions û(P, s n)
to individual processors.

3.1.2 Time Differencing

A variety of time differencing methods has been pro-
posed to solve the IBVP for (2.5)-(2.6). Among these
are, θ methods [Ingber, Chen and Tanski (2004); Ingber
and Phan-Thien (1992)], time-splitting [Balakrishnan,
Sureshkumar and Ramachandran (2002)] and methods
based on A-stable multi-step methods for ordinary differ-
ential equations [Langdon (1999)]. As θ methods appear
to be the most popular, we shall restrict our discussion to
them.

For this, let c > 0 and define the mesh tn = nτ, n ≥ 0. For
tn ≤ t ≤ tn+1, approximate u(P, t) by

u(P, t) � θu(P, tn+1)+(1−θ)u(P, tn) , (3.6)

and

∆u(P, t) � θ∆u(P, tn+1)+(1−θ)∆u(P, tn) , (3.7)

where 0 < θ≤ 1 and

ut (P, t) � u(P, tn+1)−u(P, tn)
τ

. (3.8)

Using (2.5)-(2.6) in Section 2 and denoting the resulting
approximation to u(P, tn) by un, un satisfies

θ∆un+1 +(1−θ)∆un−c [θun+1 +(1−θ)un]

=
un+1 −un

τ
+ fn (3.9)

where fn ≡ f (P, tn) . Rearranging (3.9) gives

∆un+1 − un+1

θτ
−cun+1

=
c(1−θ)un

θ
− un

θτ
− (1−θ)∆un

θ
+

fn

θ
. (3.10)

For θ = 1 we get the backward Euler method

∆un+1 − un+1

τ
−cun+1 = −un

τ
+ fn. (3.11)

Defining λ2 = c+1/τ, (3.11) is of the form

∆un+1 −λ2un+1 = −un

τ
+ fn, (3.12)
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which is a sequence of inhomogeneous modified
Helmholtz equations. From (2.9) we have the initial con-
dition

u0 = m(P) (3.13)

and from (2.10) the boundary condition is

Bun+1 = gn+1 = g(P, tn+1) , (3.14)

so again numerically, the IBVP is reduced to solving
a sequence of BVP for the inhomogeneous modified
Helmholtz equation.

For θ = 0.5 we get the Crank-Nicholson scheme




∆un+1 − 2un+1

τ
−cun+1 = cun − 2un

τ
−∆un +2 fn,

v0 = m(P) ,

Bun+1 = gn+1.

(3.15)

Again, letting λ2 = c + 2/τ {un} satisfies a sequence of
inhomogeneous modified Helmholtz equations.

Theoretically, one expects the Crank-Nicholson method
to be more accurate than the backward Euler method,
as the Euler approximation is O(τ) while the Crank-
Nicholson method is O

(
τ2
)
. However, this improved ac-

curacy may not be achieved in practice becuase of the
loss in accuracy which occurs when un numerically eval-
uating the term ∆un in the right hand side of Eq. (3.15).

It is interesting to note that one can apply time-
differencing to the nonlinear diffusion equation

∆u =
∂u
∂t

+ f (u) . (3.16)

For example, the backward Euler method gives

∆un+1 − un+1

τ
= −un

τ
+ f (un) , (3.17)

which again is a sequence of inhomogeneous modified
Helmholtz equations. Numerical results for this equation
can be found in [Golberg and Chen (2001)].

3.2 Hyperbolic Equations

3.2.1 The Laplace Transform

The IBVP for the wave equation is


∆u−cu =
∂2u
∂t2 + f , P ∈ D,

u(P,0) = m1 (P) , ut (P,0) = m2 (P) ,
Bu(P, t) = g(P, t) , P ∈ S.

(3.18)

Taking the Laplace transform of (3.18) gives

∆û(P, s)− s2û(P, s)−cû (P, s)
= −sm1 (P)+m2 (P) , P ∈ D, (3.19)

and

Bû(P, s) = ĝ(P, s) , P ∈ S. (3.20)

As for the diffusion equation, (3.19)-(3.20) is solved for
a sequence of values of {sn}N

n=1 and then applying a nu-
merical inversion formula to {û(P, sn)}N

n=1 .

3.2.2 Time-differencing

Again we consider only the class of θ methods. For this
again, defining un (P) = u(P, tn) , we approximate

∂2u
∂t2 � un+1 −2un +un−1

τ2 (3.21)

and

∆u(P, t) � θ∆u(P, tn+1)+(1−θ)∆u(P, tn) . (3.22)

Again, letting un be the approximation to un (P) ≡
u(P, tn) , and using (3.21)-(3.22) in (3.18), un satisfies

θ∆un+1 +(1−θ)∆un−c [θun+1 +(1−θ)un]

=
un+1 −2un +un−1

τ2 + fn (3.23)

and rearranging (3.23) gives

∆un+1 − un+1

θτ2 −cun+1

=
c(1−θ)un

θ
−
(

2un−un−1

θτ2

)
− (1−θ)∆un

θ
+

fn

θ
.

(3.24)

Now using the approximation

ut � un+1 −un

τ
(3.25)

we get the initial conditions

u0 (P) = m1 (P) , P ∈ D∪S (3.26)

u1 (P) = m1 (P)+ τm2 (P) , P ∈ D∪S (3.27)

and the boundary conditions

Bwn+1 (P) = gn+1 (P) , P ∈ S. (3.28)

Hence, {un} satisfies a BVP for an inhomogeneous mod-
ified Helmholtz equation as for the diffusion equation.

For θ = 0.5 we obtain a second order Crank-Nicholson
method.
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3.3 The Laguerre Transform

Although time differencing is generally more reliable
than the Laplace transform, it suffers from the prob-
lem of being unable to obtain high order accuracy and
the overall convergence rate is usually limited by this
property. Hence, it is desirable to have a transform
method which does not suffer from the instability prob-
lem of the Laplace transform. A solution to this problem,
the Laguerre transform, has recently been proposed by
[Chapko and Kress (2000)] for use in conjunction with
boundary integral methods. However, the method is ap-
plicable for use with Trefftz methods as we show next.
We begin with the parabolic case.

We begin by defining the normalized Laguerre polyno-
mials [Chapko and Kress (2000)].

Ln (r) =
1
n!

er dn

drn

(
rne−r) , n = 0,1,2, ... (3.29)

It follows immediately that {Ln} satisfy the recurrence
relation

L′
n+1 = L′

n −Ln (3.30)

which in turn implies that

L′
n = −

n−1

∑
m=0

Lm. (3.31)

By Leibniz rule using (3.29) and (3.31), it follows that

Ln (0) = 1, L′
n (0) = −n, n ≥ 0. (3.32)

The Laguerre polynomials form a complete orthonormal
system with respect to the inner product

〈 f ,g〉=
∫ ∞

0
e−r f (r)g(r)dr (3.33)

in the space of real-valued functions in L2 ([0,∞)) .

Hence, any function f in L2 ([0,∞)) can be expanded in
a series

f =
∞

∑
n=0

〈 f ,La〉Ln. (3.34)

Choosing a positive constant k, (3.34) can be scaled into
the form

f (r) = k
∞

∑
n=0

fnLn (kr) (3.35)

where

fn =
∫ ∞

0
e−krLn (r) f (r)dr. (3.36)

For a bounded and continuously differentiable function f
the Laguerre coefficients f ′n of the derivative f ′ are given
by [Chapko and Kress (2000)]

f ′n = − f (0)+k
n

∑
m=0

fm, n ≥ 0. (3.37)

Also, the coefficients of the second derivative f ′′ are
given by [Chapko and Kress (2000)]

f ′′n = − f (0)+k (n+1)+k2
n

∑
m=0

(n−m+1) fm, n ≥ 0.

(3.38)

Using (3.38), we obtain the following theorem.

Theorem 3.1 Assume that u(P, t) is a bounded, twice
continuously differentiable solution to the diffusion equa-
tion (3.18), with bounded first and second derivatives.
Then the Laguerre coefficients of u

un (P) =
∫ ∞

0
e−ktLn (kt)u(P, t)dt (3.39)

satisfy the sequence of equations

∆un−cun = −m(P)+k
n

∑
m=0

um + fn, n ≥ 0 (3.40)

where

fn =
∫ ∞

0
e−ktLn (kt) f (P, t)dt (3.41)

and boundary conditions

Bun = gn (3.42)

where

gn (P) =
∫ ∞

0
e−ktLn (kt)g(P, t)dt, n ≥ 0. (3.43)

Proof. Taking the Laguerre transform of both sides of
(3.18) gives∫ ∞

0
e−ktLn (kt)[∆u(P, t)−cu(P, t)]dt

=
∫ ∞

0
e−kt ∂u

∂t
(P, t)Ln (kt)dt +

∫ ∞

0
e−kt f (P, t)Ln (kt)dt.

(3.44)
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Now by definition of the Laguerre coefficients and the
differentiability of u, the left hand side of (3.44) becomes

∆un −cun. (3.45)

From (3.37) the right hand side of (3.44) becomes

−u(P,0)+k
n

∑
m=0

um + fn. (3.46)

It also follows from the initial condition that u(P,0) =
m(P) so that (3.46) becomes

−m(P)+k
n

∑
m=0

um + fn (3.47)

and combining (3.45) and (3.47) gives (3.40).

For (3.39), take the Laguerre transform of the boundary
condition Bu = g to get (3.39).

Now rewriting (3.40) we see that un satisfy

∆un −cun −kuu = k
n−1

∑
m=0

um + fn ≡ qn (3.48)

so that {un} satisfies a sequence of inhomogeneous mod-
ified Helmholtz equations.

A drawback of this method is that it may be necessary
to use fairly large numbers of terms (n ≥ 20 [Chapko
and Kress (2000)]) to get good convergence and this re-
quires storing many terms to obtain the approximations.
Further work is planned to determine the viability of this
approach. Last, we note that in the Chapko-Kress paper
they require zero initial values and zero source terms for
their method to work. Also, their methodology seems, at
present to be applicable only to problems in R

2, whereas
our methodology can be used both in R

2 and R
3.

For the hyperbolic case the Laguerre coefficients un of u
can be shown to satisfy

∆un −cun

=
n

∑
m=0

βn−mum −m2 (P)

+[k (n+1)+1]m1 (P)+ fn (P) (3.49)

where

βn = k2 (n+1)+k, n ≥ 0 (3.50)

with boundary conditions

Bun = gn, n ≥ 0. (3.51)

This can be proved using (3.37) and (3.38). We leave the
details to the reader.

4 The Trefftz Method

Until relatively recently, Trefftz methods had been lim-
ited to solving homogeneous linear elliptic equations.
However, extensive research over the past decade on the
numerical evaluation of particular solutions for elliptic
operators has made it possible to extend this classical
method to solve inhomogeneous elliptic, time-dependent
and nonlinear equations. As we have seen, solving time-
dependent PDEs requires solving a set of inhomoge-
neous Helmholtz equations. Hence, we consider bound-
ary value problems for

Lu = ∆u−λ2u = f . (4.1)

To solve (4.1) by a Trefftz method, we begin by letting
up be a particular solution to (4.1); i.e., u p solves

Lup = f (4.2)

but up does not necessarily satisfy the boundary condi-
tions.

Then

v = u−up (4.3)

satisfies

Lv = 0, (4.4)

Bv = g−Bup. (4.5)

Assuming up is known, we then need to solve (4.4)-(4.5).

In the Trefftz method, this is done as follows: we assume
that {νn}∞

n=0 is a complete basis of solutions to Lv = 0.

That is, there exist constants {an}N
n=0 , such that

vN =
N

∑
n=0

anνn (4.6)

converges in norm to v. That is,∥∥∥∥∥v−
N

∑
n=0

anνn

∥∥∥∥∥→ 0, N → ∞, (4.7)

where ‖·‖ is a suitable norm on the solution set {Lv = 0} .

In this case, we try to determine

vN =
N

∑
n=0

anνn (4.8)
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which provides a good approximation to the solution of
the BVP. Since

LvN = 0, (4.9)

we need only satisfy the boundary conditions. Since
there is only a finite number of unknowns, we will not be
able to satisfy the boundary condition exactly, but only
approximately. Over the years, the following three pri-
mary methods have been proposed for doing this; (i) col-
location, (ii) least squares, and (iii) Galerkin’s method.

In collocation we choose N points
{

Pj
}N

j=1 on S and set

B

(
N

∑
k=1

akνk

)
(Pj) = g(Pj)−Bup (Pj) , 1≤ j ≤ N (4.10)

which implies that

N

∑
k=1

akBνk (Pj) = g(Pj)−Bup (Pj) , 1 ≤ j ≤ N. (4.11)

If (4.11) has a unique solution, then

uN = vN +up (4.12)

is an approximate solution to the BVP

Lu(P) = f (P) , P ∈ D, (4.13)

Bu(P) = g(P) , P ∈ S. (4.14)

Unfortunately, little seems to be known theoretically
about the solvability of (4.11) and the convergence of
{uN} to u. Despite this, the collocation method has been
used extensively during the past more than seventy years
[Trefftz (1926)-Reutskiy (2002)]. In addition, the ma-
trix

Ac = [Bνk (Pj)] , 1 ≤ j ≤ N,1 ≤ k ≤ N (4.15)

is generally ill-conditioned, so care must be taken when
solving (4.11). We shall return to this matter later in Sec-
tion 6.

In the method of least squares, one chooses M ≥ N points{
Pj
}M

j=1 on S and defines

Q =
M

∑
j=1

[BvN (Pj)−g(Pj)+Bup (Pj)]
2 (4.16)

The coefficients {ak}N
k=1 in this case are chosen by min-

imizing Q with respect to {ak}N
k=1 . Thus, differentiating

Q with respect to {ak}N
k=1 , these coefficients are obtained

by solving

∂Q
∂ak

= 0, 1 ≤ k ≤ N, (4.17)

giving a = (a1,a2, ...,aN)T as the solution to

AT
L ALa = ALb (4.18)

where

AL = [Bνk (Pj)] , 1 ≤ k ≤ N, 1 ≤ j ≤ M, (4.19)

and

b = [g(P1)−Bup (P1) ,g(P2)

−Bup (P2) , · · ·,g(PM)−Bup (PM)]T . (4.20)

A variant of this approach occurs when the basis func-
tions νk depend on some additional parameters {α k}l

k=1 .

Then the optimal values of {ak}N
k=1 and {αk}l

k=1 are ob-
tained by solving

∂Q
∂ak

= 0, 1 ≤ k ≤ N, (4.21)

∂Q
∂αk

= 0, 1 ≤ k ≤ l, (4.22)

We will return to this in Section 6.1.

As for collocation, one expects the equations (4.18) to be
ill-conditioned, so it is generally preferable to solve the
minimization problem directly without solving the nor-
mal equations (4.18).

4.1 Galerkin’s Method

In Galerkin’s method [Bergman and Herriot (1961,
1965)], we choose some inner product 〈·, ·〉 for functions
on S and then set the residual

rN = BvN −g+Bup (4.23)

orthogonal to the basis elements {ν k}N
k=1 . In this case,

{ak}N
k=1 are determined by solving

〈BvN −g+Bup,νk〉= 0, 1 ≤ k ≤ N. (4.24)

To obtain an appropriate inner product, we use an argu-
ment analogous to that introduced by Bergman for solv-
ing Laplace’s equation [Bergman and Herriot (1961)].
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For L = ∆−c, c > 0,Lu = 0 and Lv = 0, we define

〈u,v〉D =
∫

D

[
d

∑
i=1

∂u
∂xi

∂v
∂xi

+cuv

]
dV, d = 2,3. (4.25)

If X is the set of solutions to Lv = 0, then 〈u,v〉D is an
inner product on X .

Obviously, 〈·, ·〉D is symmetric and bilinear and

〈u,u〉D =
∫

D

[
d

∑
i=1

(
∂u
∂xi

)2

+cu2

]
dV ≥ 0, d = 2,3,

(4.26)

so 〈u,u〉D = 0 ⇔ u = 0. We now show that 〈u,v〉D is
equivalent io an inner product on the boundary values of
functions in X .

For this consider

div(ugradv) = div

(
u

∂v
∂x1

,u
∂v
∂x2

,u
∂v
∂x3

)
, in R

3 (4.27)

and

div(ugradv) = div

(
u

∂v
∂x1

,u
∂v
∂x1

)
, in R

2 (4.28)

Now,

div(ugradv)

=
∂

∂x1

(
u

∂v
∂x1

)
+

∂
∂x2

(
u

∂v
∂x2

)
+

∂
∂x3

(
u

∂v
∂x3

)

=
3

∑
i=1

∂u
∂xi

(
∂v
∂xi

)
+u∆v, in R

3 (4.29)

and

div(ugradv) =
2

∑
i=1

∂u
∂xi

(
∂v
∂xi

)
+u∆v, in R

2. (4.30)

Since ∆v = cv,

div(ugradv) =
d

∑
i=1

∂u
∂xi

(
∂v
∂xi

)
+cuv, d = 2,3 (4.31)

so

〈u,v〉D =
∫

D
div(ugradv)dV. (4.32)

By the divergence theorem,∫
D

div(ugradv)dV =
∫

S
(ugradv) ·ndS (4.33)

where n is the unit outward normal on S. But

gradv ·n =
∂v
∂n

(4.34)

is the normal derivative of v. Hence, it follows from
(4.32) and (4.33) that

〈u,v〉D =
∫

S
u

∂v
∂n

dS ≡ 〈u,v〉S (4.35)

Similarly,

〈u,v〉S =
∫

S
v

∂u
∂n

dS. (4.36)

It now follows from the fact that 〈u,v〉D is an inner prod-
uct that 〈·, ·〉S is an inner product on the boundary values
of functions in X .

Using this inner product, (4.24) becomes

〈BvN −g+Bup,νk〉S = 0, 1 ≤ k ≤ N. (4.37)

Since vN = ∑N
j=1 a jBν j, (4.37) gives

N

∑
j=1

a jB
〈
ν j,νk

〉
S = 〈g−Bup,νk〉S , 1 ≤ k ≤ N. (4.38)

Now suppose that we have Dirichlet boundary conditions
on u, then, BvN = vN so (4.38) becomes

N

∑
j=1

a j
〈
ν j,νk

〉
S = 〈g−Bup,νk〉S , 1 ≤ k ≤ N. (4.39)

If
{

ν j
}∞

j=1 are linearly independent, then the matrix

AG =
[〈

ν j,νk
〉]

, 1 ≤ j,k ≤ N (4.40)

is a Gram matrix. Hence, it is positive definite, and so it
is invertible.

For Neumann boundary conditions, Bu = ∂u/∂n and in
this case

〈
Bν j,νk

〉
S =

∫
S

∂ν j

∂n
∂νk

∂n
ds (4.41)

so this matrix will be invertible provided the derivatives{
∂ν j/∂n

}N
j=1 are linearly independent. Similarly, we

can establish invertability for Robin boundary conditions
provided α (P) > 0,P ∈ S.

As a consequence, the Galerkin equations (4.24) have
a unique solution, in contrast to collocation and least
squares, where no such theorem is known.
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A further observation is that, if the bases are chosen
so that

[〈
Bν j,νk

〉]
is the identity matrix, then obvi-

ously it will not be ill-conditioned. Generally, we expect
Galerkin’s method to be better conditioned than either
collocation or least squares.

Although Galerkin’s method appears to have better theo-
retical properties than either collocation or least squares,
there are some problems in its implementation because
of the need to evaluate the integrals

〈
Bν j,νk

〉
S and

〈g−Bup,νk〉S ,1 ≤ j,k ≤ N.

In R
2, if S is a smooth closed curve, this generally can be

done by using the trapezoidal rule, which was done by
Bergman in [Bergman and Herriot (1961)].

However, if S is a surface in R
3, this is a much more dif-

ficult problem. If S has a simple shape, such as a sphere
or a cube, then standard integration rules can be used
to do this efficiently [Golberg and Chen (1996); Stroud
(1971)]. More generally, if S can be decomposed into a
finite union of simple shapes, then the integrals can be
decomposed into a finite sum of standard integrals. More
generally, this may have to be done by a triangulation
scheme as used in the BEM [Golberg and Chen (1996)].
However, the resulting method should still be less com-
putationally complex than the BEM, since all integrals
are non-singular.

5 Particular Solutions

Over the past 20 years extensive research has been done
on the numerical evaluation of particular solutions of
elliptic operators spurred by the work of [Nardini and
Brebbia (1982)], [Mayo (1984, 1992)], [McKenney,
Greengard and Mayo (1995)], and [Atkinson (1985)]. In
general, these methods fall into two distinct classes, di-
rect methods which approximate a solution to Lu p = f by
some numerical method, and the indirect approach found
in the Dual Reciprocity Method (DRM) [Partridge, Breb-
bia and Wrobel (1992); Nardini and Brebbia (1982)].

In the DRM the source term f in ∆up −λ2up = f is ap-
proximated as

f � f̂ =
N

∑
k=1

akϕk (5.1)

where {ϕk}N
k=1 is an appropriate set of basis functions.

Then we define

ûp =
N

∑
k=1

akψk (5.2)

where {ψk}N
k=1 solve

∆ψk −λ2ψk = ϕk. (5.3)

Generally, it is best to have analytic expressions for ψ k.

By linearity,

∆ûp = f̂ , (5.4)

so we may regard ûp as an approximate particular solu-
tion. Note that in this approach û p generally does not ap-
proximate an exact particular solution of ∆u p−λ2up = f
[Golberg, Chen, Bowman and Power (1998)].

We begin our discussion by considering some direct ap-
proaches and then develop the DRM approach in detail.

5.1 Numerical Integration

As is well known, a particular solution of ∆u p−λ2up = f
is given by [Partridge, Brebbia and Wrobel (1992)]

up (P) =
∫

D
G(P,Q;λ) f (Q)dV (5.5)

where G(P,Q;λ) is the fundamental solution of the oper-
ator ∆−λ2, and G(P,Q;λ) is a solution to

∆G(P,Q;λ)−λ2G(P,Q;λ) = δ(P−Q) (5.6)

where δ(P−Q) is the Dirac delta function. It is known
that

G(P,Q;λ) =
1

2π
K0 (λr) , in R

2, (5.7)

and

G(P,Q;λ) =
1

4π
exp(−λr)

r
, in R

3, (5.8)

where r = ‖P−Q‖ is the Euclidean distance between P
and Q and K0 is the Bessel function of the third kind of
order zero.

In general, the integral in (5.5) cannot be evaluated an-
alytically and some form of numerical integration needs
to be used. This is not straightforward since G(P,Q;λ) is
singular and D can have an arbitrary shape. This gener-
ally requires a finite element approach where D is decom-
posed into triangles in R

2 and tetrahedra in R
3. Then the
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integral is approximated by a sum of integrals over each
element. If D is simply connected, then one can use a
fanning decomposition as shown in Figure 5.1 [Partridge,
Brebbia and Wrobel (1992)].

Figure 5.1: Fanning decomposition

In this approach the elements are centered at the singular
point P = Q and then polar coordinates are introduced in
each element to weaken the singularity. If D is multiply
connected, a more complex approach must be used.

In the BEM this technique has been assumed to be more
complex than the DRM approach. However, some recent
work by [Ingber, Mammoli and Brown (2001)] com-
bines numerical integration with multipole acceleration
to obtain a more efficient version of this technique. Some
numerical experiments indicate that it may be more effi-
cient than the DRM under certain circumstances. How-
ever, the accuracy of the method is limited by the ac-
curacy of the boundary approximation needed to do the
numerical integration which is generally not of high or-
der. Since Trefftz methods are generally spectrally con-
vergent for smooth data, this method may not be suitable
for use with these methods.

5.2 Atkinson’s Method

A somewhat simpler numerical integration method was
proposed by [Atkinson (1985)] for Poisson’s equation
but can be easily extended to Helmholtz-type equations.

In this method we assume that the source term f can be
extended smoothly outside of the domain D to a domain
D̂ ⊇ D. Then

up (P) =
∫

D̂
G(P,Q;λ) f (Q)dV (5.9)

is also a particular solution of ∆u p − λ2up = f . If D̂ is
chosen as an ellipse in R

2 or an ellipsoid in R
3, then a

simple coordinate transformation converts (5.9) to a form
which can be evaluated by standard numerical integration
rules.

5.3 The DRM

In the DRM a variety of bases can be used to approximate
the sources terms. Among these are: radial basis func-
tions (RBFs), [Golberg, Muleshkov, Chen and Cheng
(2003); Muleshkov, Golberg and Chen (1999); Golberg,
Chen and Ganesh (2000); Chen, Golberg, Ganesh and
Cheng (2002)] polynomials or trigonometric functions
[Li and Chen (2004)], and a number of numerical meth-
ods can be used, such as interpolation, least squares or
approximation methods. In this paper, we focus on in-
terpolation and approximation methods [Li and Chen
(2004)].

To use polynomial or trigonometric bases, we need to be
able to extend f smoothly to a domain D̂⊇ D as in Atkin-
son’s method. For RBFs no such extension is necessary.
We begin with this approach.

Definition 5.1 Let ϕ : [0,∞) → R be a continuous func-
tion. Let

{
Pj
}N

j=1 be N distinct points in R
d ,d = 2,3. A

function of the form

f (P) =
N

∑
j=1

a jϕ
(∥∥P−Pj

∥∥)+ pm (P) (5.10)

where ‖·‖ is the Euclidean norm on R
d and pm is a

polynomial of degree m is called a radial basis function
(RBF).

As indicated previously, to use RBFs to find particular
solutions we approximate f by a RBF and then we obtain
an approximate particular solution as

ûp (P) =
N

∑
j=1

a jψ j (P)+χm (P) (5.11)

where

∆ψ j −λ2ψ j = ϕ j (P) , ϕ j (P) = ϕ
(∥∥P−Pj

∥∥) (5.12)

and

∆χm −λ2χm = pm. (5.13)

Because it is generally more efficient numerically to
solve (5.12)-(5.13) analytically, this limits the choice of
RBFs one can use. In R

2, one can use thin plate and
polyharmonic splines [Muleshkov, Golberg and Chen
(1999)], while in R

3 one can use splines and Wendland’s
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compactly supported radial basis functions (CS-RBFs)
[Wenland (1995)]. It is also possible to use inverse mul-
tiquadrics and Gaussians. We begin with splines.

In R
2 a spline is of the form [Duchon (1976, 1978); Pow-

ell (1992)]

ϕ[n] (r) = r2n logr, n ≥ 1 (5.14)

and pm is a polynomial of degree m = n. For n = 1 these
are the thin plate splines (TPS)

ϕ[1] (r) = r2 logr (5.15)

and

p1 = ax+by+c. (5.16)

In R
3 the splines are of the form [Duchon (1976)]

ϕ[n] (r) = r2n−1, n ≥ 1, (5.17)

and pm is a polynomial with m = n. For n = 1, these are
the TPS

ϕ[1] (r) = r (5.18)

with

p1 = ax+by+cz+d. (5.19)

The importance of splines is that they can provide in-
terpolatory approximations to f for very general sets of
interpolation points

{
Pj
}N

j=1 in R
d. For example, in R

2 if{
Pj
}N

j=1 are not collinear, then there is a unique solution

{{a j
}N

j=1 ,a,b,c} satisfying the interpolation conditions

N

∑
j=1

a j

∥∥Pj −Pk

∥∥2
log

(∥∥Pj −Pk

∥∥)+axk +byk +c

= f (Pk) , 1 ≤ k ≤ N, (5.20)

and
N

∑
j=1

a j =
N

∑
j=1

a jx j =
N

∑
j=1

a jy j = 0, (5.21)

where Pk = (xk,yk) , 1 ≤ k ≤ N.

In R
3, if

{
Pj
}N

j=1 are not coplanar, then there is a unique

solution {{a j
}N

j=1, a,b,c,d} to the equations

N

∑
j=1

a j
(∥∥Pj −Pk

∥∥)+axk +byk +czk +d

= f (Pk) , 1 ≤ k ≤ N, (5.22)

and

N

∑
j=1

a j =
N

∑
j=1

a jx j =
N

∑
j=1

a jy j =
N

∑
j=1

a jz j = 0, (5.23)

where Pk = (xk,yk, zk) , 1 ≤ k ≤ N.

In addition, the TPS are optimal interpolants in the sense
that they minimize the semi-norm [Duchon (1976)]

∫
Rd

d

∑
j=1

(
∂2 f

∂x2
j

)2

dV, d = 2,3. (5.24)

For higher order splines we assume that
{

Pj
}N

j=1 is a in-
solvent set of points for polynomial interpolation and let
{bk}ln

k=1 be a basis for Pn, the set of polynomials of de-
gree ≤ n (ln =

(n+d
d

)
, d = 2,3 is the dimension of Pn).

Then there is a unique solution to the interpolation equa-
tions

N

∑
j=1

a jϕ[n] (∥∥Pj −Pk

∥∥)+ pn (Pk) = f (Pk) ,1 ≤ k ≤ N,

(5.25)

and

N

∑
j=1

a jbl (Pj) = 0, 1 ≤ l ≤ ln. (5.26)

In general, the accuracy of the spline approximation in-
creases as the order n of the spline increases and the num-
ber N of interpolation points increases. In fact, if ‖·‖2
denotes the L2 norm of functions on D, it is known that
[Duchon (1978)]∥∥ f − f̂

∥∥
2 ≤ chn (5.27)

where

h = sup
P∈Rd

min
Q∈{Pj}

‖P−Q‖ (5.28)

is the ‘mesh width’ of the points
{

Pj
}N

j=1 and c is a con-
stant independent of h.

However, as n increases and h decreases the matrix
A of the linear system (5.25)-(5.26) becomes more ill-
conditioned. In fact it follows from [Li and Golberg
(2003); Schaback (1995)] that

cond (A) � ch−n (5.29)
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where again c does not depend on h. Hence, finding the
appropriate trade-off between the order of spline and the
number of interpolation points is not obvious. As can
be seen from Table 5.1 the complexity of the particular
solution increases as the order n increases so generally
we have found that it is preferable to use splines of mod-
erate order. In our work, n ≤ 4 has given good results
[Muleshkov, Golberg and Chen (1999)]. Increasing the
number of interpolation points can then be used to in-
crease the accuracy of the interpolation [Duchon (1978);
Schaback (1995)]. Some authors have also found that
increasing the degree of polynomial m > n in (5.25) can
also improve the accuracy of the approximation [Ingber,
Chen and Tanski (2004)].

Having obtained the spline approximation f̂ to f we now
consider finding the particular solutions ψ j,1 ≤ j ≤ N
and χn. For ψ j we use the fact that ϕ j is the fundamental
solution of the iterated Laplacian ∆n. That is,

∆nϕ[n]
j = δ(P−Pj) . (5.30)

Hence, applying ∆n to (5.12), we find that ψ j satisfies

∆n (∆−λ2)ψ j = 0, P 
= Pj, 1 ≤ j ≤ N. (5.31)

Since ϕ[n]
j is radially symmetric, ψ j can be chosen to be

radially symmetric as well. Hence, defining ψ(r) as the
solution to

∆n
r

(
∆r −λ2)ψ = 0, r > 0, (5.32)

where ∆r is the radial part of the Laplacian ∆, i.e.,

∆ru =
1
r

d
dr

(
rdu
dr

)
, in R

2, (5.33)

and

∆ru =
1
r2

d
dr

(
r2du
dr

)
, in R

3, (5.34)

then

ψ j = ψ
(∥∥P−Pj

∥∥) , 1 ≤ j ≤ N. (5.35)

Note that (5.32) is a (2n+2)-th order ordinary differen-
tial equation. Since ∆r and ∆r −λ2 commute, it follows
that

ψ = u+v (5.36)

where

∆2
r u−λ2u = 0, (5.37)

and

∆n
r v = 0. (5.38)

Using the fact that ∆r − λ2 is a Bessel operator and ∆n
r

is essentially an Euler operator [Derrick and Grossman
(1976)], it was shown in [Muleshkov, Golberg and Chen
(1999)] that

ψ(r)

= AI0 (λr)+BK0 (λr)+
n+1

∑
k=1

ckr2k−2 logr +
n+1

∑
k=1

dkr2k−2

(5.39)

where

B = − [(2n)!!]2

λ2n+2 , (5.40)

ck = − [(2n)!!]2

[(2k−2)!!]2
λ2k−2n−4, 1 ≤ k ≤ n+1, (5.41)

dk = ck

n

∑
j=k

(
1
j

)
, 1 ≤ k ≤ n, in R

2, (5.42)

where I0 and K0 are Bessel functions of the second and
third kinds of order zero respectively, and

(2k)!! = 2×4×6×· · ·×2k, k ≥ 1.

Also,

ψ(r) (5.43)

=
(−1)n+1 (2n)!

rλ2n+2 cosh(λr)+
n

∑
k=0

(2n)!
(2k)!

r2k−1

λ2n−2k+2 ,

in R
3.

Since A is arbitrary in (5.39), we choose it to be zero.
Moreover, for computational purposes, it is more conve-
nient to use the forms

ψ(r)

= B
∞

∑
k=0

ckr2k −B
∞

∑
k=n+1

λ2k

[(2k)!!]2
r2k logr +

n+1

∑
k=1

dkr2k−2

(5.44)
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in R
2 and

ψ(r) =
∞

∑
k=n+1

(2n+1)!
(2k +1)!

r2k

λ2n−2k+2 , in R
3. (5.45)

These expressions show that ψ is C 2n+1 in R
2 and ana-

lytic in R
3.

To find χn the most straightforward way is to decompose
pn as

pn =
n

∑
k=0

akxnyn−k, in R
2 (5.46)

and

pn = ∑
0≤k+m+p≤n

ak,m,pxkymzp, in R
3 (5.47)

and then finding the solution b k to(
∆2 −λ2)bk = xkyn−k, 0 ≤ k ≤ n (5.48)

in R
2 and(

∆2 −λ2)bk,m,p = xkymzp, 0 ≤ k +m+ p ≤ n (5.49)

in R
2. This can be done by the method of unde-

termined coefficients [Golberg, Muleshkov, Chen and
Cheng (2003); Muleshkov, Chen, Golberg and Cheng
(2000)], and an explicit solution will be given in Section
5.6. In [Muleshkov, Golberg and Chen (1999)] another
formula was given without proof. Because this approach
can be generalized to other operators, we give a deriva-
tion here.

Suppose now that p is a polynomial of degree m and con-
sider solving

Lup −λ2up = p (5.50)

where L is a linear differential operator with constant co-
efficients. From (5.50)(
L−λ2I

)
up = p (5.51)

where I is the identity operator. Then formally,

up =
(
L−λ2I

)−1
p = − 1

λ2

(
I − L

λ2

)−1

p. (5.52)

Expanding
(
I −L/λ2

)−1
in a geometric series gives

(
I − L

λ2

)−1

=
n

∑
k=0

(
L
λ2

)k

(5.53)

so that

up = − 1
λ2

∞

∑
k=0

Lk p
λ2k . (5.54)

Since p is a polynomial of degree m, there exists an inte-
ger j such that Lk p = 0,k > j. Thus,

up = − 1
λ2

j

∑
k=0

Lk p
λ2k (5.55)

is well defined and can easily be shown to satisfy Lu p −
λ2up = p. Letting L = ∆,

up = −
j

∑
k=0

∆k p
λ2k+2 (5.56)

is a particular solution for ∆u p −λ2up = p. This formula
agrees with the one given in [Muleshkov, Golberg and
Chen (1999)].

As an example suppose ϕ is a TPS, then p = p1 and
(5.56) gives

up = −p1/λ2 (5.57)

since ∆k p1 = 0, k ≥ 1.

5.4 Kansa’s Method

As can be seen from Table 5.1, the particular solutions
become increasingly complex as the order of splines in-
creases. As a consequence, it is interesting to consider
other techniques that may be less analytically compli-
cated. One way of doing this is to use Kansa’s method
[Kansa (1990a, 1990b)]. Here, we proceed as follows.

Let ψ j be a RBF and define

ϕ j = Lψ j. (5.58)

Now approximate f by ϕ j, 1 ≤ j ≤ N. Then

f � f̂ =
N

∑
j=1

a jϕ j (5.59)

where f̂ can be obtained by interpolation as for splines.
Define

ûp =
N

∑
j=1

a jψ j (5.60)
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Table 5.1 Particular Solutions and the Values of Order nTable 5.1 Particular Solutions and the Values of Order n
ϕ Ψ

r2 log r




− 4
λ4 [K0 (λr)+ log r]− r2 log r

λ2 − 4
λ4 , r > 0

4
λ4 [γ+ log (λ/2)]− 4

λ4 , r = 0

r4 log r




−64
λ6 [K0 (λr)+ logr]− r2 log r

λ2

(
16
λ2 + r2

)
− 8r2

λ4 − 96
λ6 , r > 0

64
λ6 [γ+ log(λ/2)]− 96

λ6 , r = 0

r6 log r




−2304
λ8 [K0 (λr)+ logr]− r2 log r

λ2

(
576
λ4 +

36r2

λ2 + r4

)

−12r2

λ4

(
40
λ2 − r2

)
− 4224

λ8 , r > 0

2304
λ8 [γ+ log(λ/2)]− 4224

λ8 , r = 0

r8 log r




−147456
λ10 [K0 (λr)+ logr]− r2 log r

λ2

(
36864

λ6 +
2304r2

λ4 +
64r4

λ2

)

− r2

λ4

(
39936

λ4 +
1344r2

λ2 −16r4

)
− 307200

λ10 , r > 0

147456
λ10 [γ+ log(λ/2)]− 307200

λ10 , r = 0

r10 log r




−14745600
λ12 [K0 (λr)+ log r]− r2 log r

λ2

(
3686400

λ8 +
230400r2

λ6

+
6400r4

λ4 + r6

)
− r2

λ4

(
4730880

λ6 +
180480r2

λ4 +
2880r2

λ2 + 20r6

)
−33669120

λ12 , r > 0
14745600

λ12 [γ+ log (λ/2)]− 33669120
λ12 , r = 0

In Table 5.1, γ� 0.5772156649015328, which is known as Euler’s constant.

then,

Lûp =
N

∑
j=1

a jLψ j =
N

∑
j=1

a jϕ j = f̂ . (5.61)

So, ûp is an approximate particular solution to Lu p = f .

For this method to be mathematically correct, it is neces-
sary that the interpolation problem

N

∑
j=1

a jϕ j (Pk) = f (Pk) , 1 ≤ k ≤ N (5.62)

be uniquely solvable. Unfortunately, a number of au-
thors have used this approach without guaranteeing this
property. However, there is a number of cases where this
can be proved, in particular, when ϕ is a positive definite
RBF.

Definition 5.2 Let ϕ be a RBF. We say that ϕ is positive
definite if and only if for every subset of points

{
Pj
}N

j=1

in R
d the matrices

Aϕ =
[
ϕ
(∥∥Pk −Pj

∥∥)] , 1 ≤ j,k ≤ N, (5.63)

are positive definite in the usual sense in linear algebra.

Since positive definite matrices are invertible, the inter-
polation equations (5.58) will have a unique solution.
Now, if ψ is a positive definite RBF, it follows from
Bochner’s theorem [Bochner (1959)] and the fact that
∆− λ2 is a negative definite operator that ϕ = Lψ is a
negative definite RBF. In this case, the interpolation ma-
trix in (5.63) is negative definite, so again the interpola-
tion problem has a unique solution. Fortunately, there is
a number of well known positive definite RBFs. Among
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these are, the inverse multiquadratics (IMQs)

ϕ (r) =
(
r2 +c2)−1/2

(5.64)

and Gaussians

ψ(r) = exp
(−cr2) (5.65)

and Wendland’s CS-RBFs to be discussed in the follow-
ing section.

One drawback to this approach is that, to the best of
our knowledge, the approximation properties of ϕ =(
∆−λ2

)
ψ appear not to be known. However, for IMQs

and Gaussians, we expect rapid convergence, if f is
smooth.

5.5 Compactly Supported RBFs

Since splines, IMQs, and Gaussians are globally sup-
ported, the linear systems of equations needed for in-
terpolation are dense and can be quite large and ill-
conditioned, particularly for problems in R

3. As a con-
sequence, for many years, the ‘holy grail’ of the RBF
community was to find a class of compactly supported
RBFs (CS-RBFs) for which the interpolation problem
was uniquely solvable. This problem was first solved in
the mid-1990’s by [Wu (1995)] and [Wenland (1995)].
For our purposes, we concentrate on Wendland’s CS-
RBFs. They are of the form

ϕ (r) =
{

(1− r)n
+ p(r) , 0 ≤ r ≤ 1,

0, r > 1,
(5.66)

where

(1− r)+ =
{

1− r, 0 ≤ r ≤ 1,
0, r > 1.

(5.67)

and p(r) is a polynomial of suitable degree.

In R
d, d = 2,3, the first four CS-RBFs are

ϕ1 (r) = (1− r)2
+ , (5.68)

ϕ2 (r) = (1− r)4
+ (4r +1) , (5.69)

ϕ3 (r) = (1− r)6
+
(
35r2 +18r +3

)
, (5.70)

and

ϕ4 (r) = (1− r)8
+
(
32r3 +25r2 +8r +1

)
. (5.71)

Since Wendland’s CS-RBFs are positive definite, the in-
terpolation problem is uniquely solvable for arbitrary sets
of interpolation points

{
Pj
}N

j=1 .

For efficient interpolation, it is necessary to consider the
scaled RBFs

ϕa (r) = (1− r/a)n
+ p(r/a) (5.72)

with support in [0,a] rather than [0,1] . For a given set
of interpolation points, the interpolation matrices A ϕ are
sparse with the sparseness increasing as a decreases. On
the other hand, the approximation accuracy increases
as a increases. Hence, it is important to find the opti-
mal trade-off between sparsity and accuracy. At present,
the best approach to this problem seems to be the use
of multilevel methods as discussed in [Golberg, Chen
and Ganesh (2000); Chen, Golberg, Ganesh and Cheng
(2002); Floater and Iske (1996)]. We refer the reader
there for details.

To compute particular solutions to
(
∆−λ2

)
up = ϕ two

methods have been discussed, Kansa’s method in R
2

and R
3, and a direct method in R

3 [Golberg, Chen
and Ganesh (2000); Chen, Golberg, Ganesh and Cheng
(2002)]. We discuss this method next.

As noted for splines, it suffices to find the solution to

1
r2

d
dr

(
r2 dψa

dr

)
−λ2ψa = ϕ (r/a) (5.73)

and then

ψ j (P) = ψa
(∥∥P−Pj

∥∥) , 1 ≤ j ≤ N. (5.74)

To solve (5.73), we make the change of variable

w = rψa (5.75)

which satisfies

d2w
dr2 −λ2w = rϕ (r/a)≡ v(r) . (5.76)

Since p(r) is a piecewise polynomial, we have

d2w
dr2 −λ2w = r (1− r/a)n p(r/a) , 0 ≤ r ≤ a, (5.77)

and

d2w
dr2 −λ2w = 0, r > a. (5.78)

Hence, it follows from the elementary theory of ordi-
nary differential equations that [Derrick and Grossman
(1976)]

w(r) =
{

Ae−λr +Beλr +q(r) , 0 ≤ r ≤ a,

Ce−λr +Deλr , r > a,
(5.79)
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where q(r) is a particular solution to w − λ 2w = v(r)
which can be chosen to be a polynomial and can be found
in principle by the method of undetermined coefficients.
Unfortunately, this quickly leads to very messy algebra,
so we have found it advantageous to do this with sym-
bolic ordinary differential equation (ODE) solvers, such
as those in MAPLE R© or MATHEMATICA R©.

The four constants (A,B,C and D) in (5.79) can be cho-
sen , so that ψ is C2 on [0,∞) . For this, it was shown
in [Golberg, Chen and Ganesh (2000)] that it suffices to
choose w(0) = 0. In fact, we have the following theorem
[Golberg, Chen and Ganesh (2000)].

Theorem 5.1 Let w be a solution of (5.78) with w(0) =
0. Then ψa = w/r is twice continuously differentiable at
r = 0 with

ψa (0) = w′ (0) , ψ′
a (0) = 0,

ψ′′
a (0) =

1
3

[
λ2w′ (0)+ p(0)

]
. (5.80)

Furthermore, ψa satisfies (5.78) in the sense of limr →
0+.

Proof. Theorem 5.1 is proved by repeated use of
l’Hospital’s rule. See [Golberg, Chen and Ganesh
(2000)] for details.

From Theorem 5.1 and (5.79), ψa is C2 at r = 0 if

A+B+q(0) = 0. (5.81)

Moreover, one can show that ψa is C2 at r = a if

{
Ae−λa +Beλa = Ce−λa +Deλa,

−Aλe−λa +Beλa +q′ (a) = −Cλe−λa +Dλeλa.

(5.82)

Since there are four constants in (5.81)-(5.82) and three
equations, one constant can be chosen arbitrarily. We
choose D = 0 and then (5.81)-(5.82) can be solved to give

ψa (r) =




λ [2B+q(0)]+q′ (0) , r = 0,[
Ae−λa +Beλa +q(r)

]
/r, 0 < r ≤ a,

Ce−λa/r, r > a.

(5.83)

Note that (5.83) holds for all CS-RBFs and only q(r)
changes.

As examples we have the values q1,q2,q3 corresponding
to ϕi (r) , i = 1,2,3 in (5.68)-(5.70) [Golberg, Chen and
Ganesh (2000)].

q1 (r) =
4

λ4α
−
(

1
λ2 +

6
λ4α

)
r +

2
λ2α

r2− 1
λ2α2 r3 ,

q2 (r) = − 480
α3s6 −

2880
α5s8 +

(
1800
α4s6 +

60
α2s4 −

1
s2

)
r

−
(

240
α3s4 +

1440
α5s6

)
r2 +

(
300
α4s4 +

10
α2s2

)
r3

−
(

20
α3s2 +

120
α5s4

)
r4 +

15
α4s2 r5 − 4

α5s2 r6 ,

q3 (r) =
322560
λ8α5 +

7741440
λ10α7

+
(

168
λ4α2 −

3
λ2 −

2116800
λ8α6

−12700800
λ10α8 − 25200

λ6α4

)
r

+
(

3870720
λ8α7 +

161280
λ6α5

)
r2

+
(

28
λ2α2 −

4200
λ4α4 −

2116800
λ8α8 − 352800

λ6α6

)
r3

+
(

13400
λ4α5 +

322560
λ6α7

)
r4

−
(

210
λ2α4 +

17640
λ4α6 +

105840
λ6α8

)
r5

+
(

448
λ2α5 +

10752
λ4α7

)
r6−

(
2520
λ4α8 +

420
λ2α6

)
r7

+
192
λ2α7 r8 − 35

λ2α8 r9 .

5.6 Polynomial Particular Solutions

As we have already seen in the course of finding partic-
ular solution for

(
∆−λ2

)
up = f using splines, it was

necessary to obtain polynomial particular solutions as
well. Since polynomials are generally better understood
mathematically than RBFs, it is reasonable to consider
obtaining particular solutions using only polynomial ap-
proximations to f . This was first done by [Atkinson
(1985)] for Poisson’s equation and generalized for the
Helmholtz and modified Helmholtz equations in [Gol-
berg, Muleshkov, Chen and Cheng (2003); Muleshkov,
Chen, Golberg and Cheng (2000)]. Related work can be
found in [Janssen (1997)].
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In general, one cannot interpolate a multidimensional
polynomial on arbitrary scattered data, so a different
approach is necessary than for RBF interpolation [Gol-
berg and Chen (1996); Golberg, Muleshkov, Chen and
Cheng (2003)]. In [Golberg, Muleshkov, Chen and
Cheng (2003)] a standard tensor product of Chebyshev
polynomials was used. To do this the physical domain
is embedded in a rectangle [a,b]× [c,d] in R

2 and in a
parallelepiped [a,b]× [c,d]× [e, f ] in R

3. Then f is ap-
proximated in R

2 by the interpolant [Boyd (2001)]

f (x,y) � qm,n (x,y)

=
n

∑
i=0

m

∑
j=0

a jiTj

(
2x−b−a

b−a

)
Ti

(
2y−d −c

d−c

)
(5.84)

where

a ji =
4

nmcjci

n

∑
q=0

m

∑
p=0

f (xp,yq)
cpcq

cos
(πp

n

)
cos

(πq
m

)
,

(5.85)

and

xp = cos
( pπ

n

)
, 0 ≤ p ≤ n,

yq = cos
(qπ

m

)
, 0 ≤ q ≤ m,

c0 = cm = 2,ci = 1,1 ≤ i ≤ n−1,

c0 = cm = 2,c j = 1,1 ≤ j ≤ m−1,

(5.86)

with a similar expression f (x,y, z)� qn,m,p (x,y, z) in R
3.

Here Tj (x) and Ti (y) are the Chevyshev polynomials of
the first kind of degrees i, j respectively.

Then qm,n (x,y) and qn,m,p (x,y, z) are expanded in mono-
mial form

qn,m (x,y) =
n

∑
s=0

m

∑
r=0

br,sxrys (5.87)

and

qn,m,p (x,y, z) =
p

∑
t=0

n

∑
s=0

m

∑
r=0

br,s,t xryszt (5.88)

and particular solutions ur,s and ur,s,t are calculated for
the monomial terms xrys or xryszt. Then particular solu-
tions are given by

ûp (x,y) =
n

∑
s=0

m

∑
r=0

br,sur,s (5.89)

and

ûp (x,y, z) =
p

∑
t=0

n

∑
s=0

m

∑
r=0

br,s,t ur,s,t (5.90)

The particular solutions ur,s and ur,s,t are given by the fol-
lowing theorems [Golberg, Muleshkov, Chen and Cheng
(2003); Muleshkov, Chen, Golberg and Cheng (2000)].

Theorem 5.2 Let ε ∈ {−1,1}. A particular solution for

∆ψ+ελ2ψ = xmyn, m ≥ 0, n ≥ 0, (5.91)

is given by

ψ(x,y) =
[m/2]

∑
k=0

[n/2]

∑
l=0

ε(−ε)k+l (k + l)!m!n!xm−2kyn−2l

λ2k+2l+2k!l!(m−2k)!(n−2l)!
.

(5.92)

Proof. See [Golberg, Muleshkov, Chen and Cheng
(2003)].

Theorem 5.3 A particular solution for (ε ∈ {−1,1})

∆ψ+ελ2ψ = xpyqzr, p ≥ 0,q ≥ 0, r ≥ 0, (5.93)

is given by

ψ(x,y, z)

=
[p/2]

∑
j=0

[q/2]

∑
k=0

[r/2]

∑
l=0

ε(−ε)k+l ( j +k + l)!p!q!r!xp−2 jyq−2kzr−2l

λ2 j+2k+2l+2 j!k!l!(p−2 j)!(q−2k)!(r−2l)!
. (5.94)

Proof. See [Golberg, Muleshkov, Chen and Cheng
(2003)].

In [Golberg, Muleshkov, Chen and Cheng (2003)] the
monomial expressions were obtained using the symbolic
code MATHEMATICA and the code for this can be
found in [Golberg, Muleshkov, Chen and Cheng (2003)].
However, this led to some programming difficulties as
the MATHEMATICA code had to be translated into
FORTRAN for numerical purposes.
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A more direct approach can be based on the fact that
[Abramovitz and Stegun (1965)]

Tn (x) =
(n

2

) [n/2]

∑
m=0

(m−2m−1)!
m!(n−2m)!

(2x)n−2 (5.95)

and then the monomial expansion can be obtained by di-
rect multiplication of these expressions. This is currently
under investigation.

5.7 Trigonometric Particular Solutions

As we have already seen, using RBFs or polynomials
to obtain particular solutions for the modified Helmholtz
operator requires some analytic ingenuity and can lead to
complex expressions if high order approximation to the
source term f is required. On the other hand, if trigono-
metric expansions are used, then calculating the particu-
lar solution is straightforward, but obtaining rapidly con-
vergent expansions requires some effort.

A number of authors have used this approach, but in
our opinion the method of approximation has not al-
ways been mathematically correct [Reutskiy (2002)].
Hence, we follow an approach first proposed by [Atkin-
son (1985)] for Poisson’s equation but somewhat simpli-
fied compared to his [Li and Chen (2004)].

As for polynomial approximations we embed D into a
rectangle D̂ in R

2 or a box D̂ in R
3. For simplicity we

assume D = [−π,π]d , d = 2,3. We then obtain a smooth
extension of f to D̂ and then compute a rapidly conver-
gent Fourier series approximation to f̂ .

Let L2
(
[−π,π]d

)
be the space of complex square-

integrable functions on [−π,π]d and define the inner
product of f and g by

〈 f ,g〉=
1

(2π)d

∫
[−π,π]d

f (x)g(x)dV. (5.96)

To approximate 〈 f ,g〉 we use the quadrature rule

〈 f ,g〉n =
1

(2n)d ∑
j∈Zd(n)

f

(
jπ
n

)
g

(
jπ
n

)
(5.97)

for any integer n ≥ 1 where

Zd (n) =
{

j = ( j1, ..., jl) ∈ Zd ;−n ≤ j1, ..., jd ≤ n−1
}

.

(5.98)

Now any f ∈ L2
(
[−π,π]d

)
can be expanded into a

Fourier series

f (x) = ∑
k∈Zd

〈
f ,ek·x〉eik·x (5.99)

where k = (k1,k2, ...,kd) and k · x = ∑d
l=1 xlkl. Using

(5.97) the Fourier expansion (5.99) can be approximated
by the hyperinterplation operator [Sloan (1995); Gol-
berg and Bowman (1998)]

Ln f (x) = ∑
‖k‖∞≤n−1

〈
f ,ek·x〉

n eik·x (5.100)

where ‖k‖∞ = max1≤l≤d |kl| .
Approximation results for Ln are given in [Li and Chen
(2004)]. To describe these, let

Sn = span
{

eik·x;‖k‖∞ ≤ n−1
}

. (5.101)

Then,

‖Ln f‖2 ≤ ‖ f‖∞ (5.102)

where

‖ f‖2 =
1(√
2π
)d

∫
[−π,π]d

| f |2 dV, (5.103)

‖ f‖∞ = sup
x∈[−π,π]d

| f | , (5.104)

and

‖ f −Ln f‖2 ≤ inf
χ∈Sn

‖ f −χ‖ . (5.105)

From this it follows that if f is compactly supported on
[−π,π]d and f is r times continuously differentiable, then

‖ f −Ln f‖2 ≤ c/nr. (5.106)

For our purposes, it suffices to use only the Fourier sine
series expansion of f . Assume then that D ⊆ [0,π]d (This
can always be done by simple translation and rescaling of
variables if necessary). Let χ be a smooth function such
that χ (x) = 1, x ∈ D and χ (x) = 0, x /∈ [0,π]d . Let

fχ (x) = f χ (x) (5.107)

then fχ = f for x ∈ D and fχ is compactly supported in
[0,π]d . Extend fχ continuously to be an odd function,
i.e., fχ (...,−xl, ...) = − fχ (...,−xl, ...), 1 ≤ l ≤ d.
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Then the Fourier series of fχ is only a sine series, i.e.,

fχ (x) = ∑
j∈Zd

π

b j
(

fχ
)

sin( j1x1) · · · sin( jdxd) (5.108)

where

Zd
π = {j = ( j1, j2, ..., jd) : j1 ≥ 1, ..., jd ≥ 1} (5.109)

and

bj
(

fχ
)

=
1
πd

∫
[−π,π]d

fχ(x) sin( j1x1) · · · sin( jdxd)dV.

(5.110)

Correspondingly, the hyperinterpolation operator takes
the form

Ln
(

fχ
)
= ∑

j∈Zd
k−1

[
b j
(

fχ
)]

n sin( j1x1) · · · sin( jdxn) (5.111)

where Zd
n−1 = {1 ≤ j1, j2, ..., jd ≤ n−1} and

[
bj
(

fχ
)]

n =
〈

fχ (x) , sin( j1x1) , · · ·, sin( jdxd)
〉

n (5.112)

Using Ln
(

fχ
)

to approximate the source term f , it can be
verified by direct differentiation that the corresponding
particular solutions are given by

ûp (x,y)

= − ∑
1≤ j1, j2≤n−1

[
b j
(

fχ
)]

n

j2
1 + j2

2 +λ2
sin( j1x) sin( j2y) , in R

2

(5.113)

and

ûp (x,y, z)
= − ∑

1≤ j1, j2, j3≤n−1[
b j
(

fχ
)]

n

j2
1 + j2

2 + j2
3 +λ2

sin( j1x) sin( j2y) sin( j3z) , in R
3.

(5.114)

Last, we point out that the hyperinterpolation operator
Ln
(

fχ
)

can be calculated efficiently by using the fast
Fourier transform. Details can be found in [Li and Chen
(2004)].

Figure 6.1: D and bounded domain D̂

6 Trefftz Bases

Having discussed how to obtain particular solutions, we
now turn to the issue of determining appropriate Trefftz
bases for solving the homogeneous boundary value prob-
lem.

Generally, Trefftz bases fall into two broad classes, F-
Trefftz bases based on fundamental solutions for ∆−λ 2

and T-Trefftz bases, which are usually obtained by sep-
aration of variables. T-Trefftz bases can also be gen-
erated by the application of Bergman-Vekua operators
[Bergman and Shiffer (1953); Bergman and Herriot
(1965); Vekua (1967); Melenk (1995); Melenk and
Babus̆ka (1995)] which are discussed in Section 6.5.
This latter approach is interesting because it can be used
to generate bases for operators with non-constant coeffi-
cients [Bergman and Shiffer (1953); Bergman and Her-
riot (1965); Vekua (1967); Melenk (1995); Melenk and
Babus̆ka (1995)].

6.1 The Method of Fundamental Solutions

In our work we have focussed on F-Trefftz bases giving
rise to what is usually called the method of fundamental
solutions (MFS) [Golberg and Chen (1996, 1998); Limic
(1981); Alves (2000)]. This method may be viewed as
a version of the boundary integral equation method as
shown in [Golberg and Chen (1998)]. This technique
was pioneered by [Kupradze and Aleksidze (1964)] and
was, until recently, limited to solving homogeneous el-
liptic problems.

To begin a description of the method, we assume that D
is bounded, connected and simply connected. Let D̂ be a
bounded domain containing D as shown in Figure 6.1.

Let Ŝ be the boundary of D̂ and let
{

Q j
}N

j=1 be N distinct



24 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.1-37, 2004

points on Ŝ and define

vN (p) =
N

∑
j=1

a jG(P,Q j;λ) , P ∈ D∪S (6.1)

where G(P,Q j,λ) is a fundamental solution of ∆ −
λ2. Since

(
∆−λ2

)
G(P,Q j;λ) = 0, P 
= Q, then(

∆−λ2
)

vN = 0, P ∈ D ∪ S. In [Alves (2000)] it
was shown that if

{
Q j
}∞

j=1 is dense in Ŝ, then

the set
{

G(P,Q j;λ)
}∞

j=1 is complete in the set X ={(
∆−λ2

)
v = 0

}
. Hence,

{
G(P,Q j;λ)

}∞
j=1 is a Trefftz

basis for X .

As noted in Section 4, the coefficients
{

a j
}N

j=1 in (6.1)
can be chosen by collocation, least squares or Galerkin’s
method. In our work we have generally used collocation,
although other methods are also being investigated.

As shown in Section 4, for collocation we choose N
points on S and set

BvN (Pk) = g(Pk)−Bup (Pk) , 1 ≤ k ≤ N. (6.2)

Using (6.1) in (6.2) gives the N linear equations

N

∑
j=1

a jBG(Pk,Q j;λ) = g(Pk)−Bup (Pk) , 1 ≤ k ≤ N.

(6.3)

These equations can then be solved by direct solvers such
as Gaussian elimination. However, this requires care,
since the matrix

Ac = [BG(Pk,Q j)] , 1 ≤ j,k ≤ N, (6.4)

can be highly ill-conditioned [Schaback (1995); Kita-
gawa (1988, 1991); Ramachandran (2002)]. Generally,
the condition number of Ac increases as the distance of
Ŝ from S increases. At the same time the accuracy of
the MFS increases under these same circumstances. At
present, the optimal location of the source points is not
known but generally we have found that choosing the dis-
tance of Ŝ from S at most three times the diameter of D
seems to give good results [Golberg and Chen (1998)].
Moreover, it usually is satisfactory to choose the source
points uniformly distributed on a circle of radius R in R

2

and uniformly on a sphere of radius R in R
3 [Golberg

and Chen (1998); Bogomolny (1985); Katsurada and
Okamoto (1996)].

Because there is some uncertainty about the effect of the
ill-conditioningof A c, we have begun investigating meth-
ods to mitigate this problem. These are based on ideas
drawn from statistical analysis.

Many of these methods are based on the singular value
decomposition (SVD) of Ac. This approach was first ex-
amined by [Kitagawa (1988, 1991)] for Laplace’s equa-
tion and more recently by [Ramachandran (2002)]. Here
we extend these ideas to the modified Helmholtz equa-
tion.

As is well-known an N×N matrix A can be decomposed
as [Golberg and Cho (2004)]

A = UDVT (6.5)

where U and V are orthogonal matrices and D is the diag-
onal matrix of singular values of A. Let µi,1 ≤ i ≤ N be
the singular values assumed to be ordered in decreasing
order; i.e., µ1 ≥ µ2 ≥ · · · ≥ µN and µi are the eigenvalues
of AT A.

Using (6.5), the solution of Ax = y can be obtained as
follows. Since the columns of V span R

N ,

x =
N

∑
i=1

aivi (6.6)

where {vi}N
i=1 are the columns of V. From (6.5) Avi =

µiui where ui are the columns of U. Then,

y = Ax =
N

∑
i=1

aiAvi =
N

∑
i=1

aiµiui. (6.7)

Since {ui}N
i=1 are orthogonal,

ai = 〈y,ui〉
/

µi 1 ≤ i ≤ N, (6.8)

which gives

x =
N

∑
i=1

〈y,ui〉vi

µi
(6.9)

as the SVD of the solution x.

This expression can be used to analyze the propagation
of error in the solution of Ax = y. Suppose y is perturbed
by a vector ∆y, i.e., y → y + ∆y, then the solution x is
perturbed by

∆x =
N

∑
i=1

〈∆y,ui〉vi

µi
(6.10)
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so that

‖∆x‖ ≤
N

∑
i=1

|〈∆y,ui〉|
µi

‖vi‖ ≤
N

∑
i=1

‖∆y‖‖ui‖‖vi‖
µi

. (6.11)

Since ‖ui‖= ‖vi‖= 1, 1≤ i ≤ N, ‖∆x‖≤ ∑N
i=1 ‖∆y‖/µi.

Hence, the error ‖∆y‖ is magnified by 1/µi, 1 ≤ i ≤ N.
Since ill-conditioning is indicated by small singular val-
ues, error propagation can be reduced by dropping the
terms in (6.11) satisfying µi ≤ ε, where ε(> 0) is some
pre-assigned error value. Hence, to reduce the effect of
ill-conditioning we approximate x by

x̂ =
M

∑
i=1

〈y,ui〉vi

µi
(6.12)

where µi ≤ ε for i > M. x̂ is called the truncated sin-
gular value decomposition (TSVD) of x. Of course, this
increases the truncation error.

x− x̂ =
N

∑
i=M+1

〈y,ui〉vi

µi
. (6.13)

The expectation is that if the values 〈y,u i〉 are small, the
truncation error will be small while the propagation of
round-off error is mitigated by using x̂ instead of x.

As has been observed experimentally, the MFS has the
somewhat surprising property that the ill-conditioning
often seems to have little effect on the numerical accu-
racy of x. As yet, there seems to be no general rigorous
explanation of this fact. An heuristic explanation of this
fact follows.

First, note that the solution of (6.13) is not of primary im-
portance, rather the approximate solution of the boundary
value problem is. Letting

c = [G(P,Q1) ,G(P,Q2) , ...,G(P,QN)]T , P ∈ D∪S,

(6.14)

vN (P) = 〈c,x〉 , P ∈ D∪S. (6.15)

Using the SVD of x

vN (P) =
N

∑
i=1

〈y,ui〉 〈c,vi〉
µi

. (6.16)

Assume now that µi, i≥ M +1 are the small singular val-
ues of A and 〈c,vi〉 = 0, i ≥ M +1. Then

vN (P) =
M

∑
i=1

〈y,ui〉 〈c,vi〉
µi

. (6.17)

Hence, the effect of small singular values has been elim-
inated. Since we do not expect this to hold exactly, it
suggests an alternative procedure to mitigate the effect of
the small singular values.

Write

vN (P) =
N

∑
i=1

〈y,ui〉
µi/〈c,vi〉 ≡

N

∑
i=1

〈y,ui〉
σi

, P ∈ D∪S. (6.18)

Now order |σi| ,1 ≤ i ≤ N in decreasing order and for
simplicity assume that |σ1| ≥ |σ2| ≥ · · · ≥ |σN | . If M is
chosen such that |σi|< ε, i > M, then vN is approximated
by

v̂N (P) =
M

∑
i=1

〈y,ui〉
σi

, P ∈ D∪S. (6.19)

We now expect v̂N (P) to be more computationally stable
than vN(P).
Other approaches to mitigating the ill-conditioning can
be based on least squares and Galerkin methods. Be-
fore discussing this, we first examine the cause of the
ill-conditioning of A. Let

r j = (BG(Pj,Q1) ,G(Pj,Q2) , ...,G(Pj,QN)) (6.20)

be the j-th row of A. Since G is a function of the Eu-
clidean distance ‖P−Q‖ between P and Q, r j depends
on the distances

∥∥Pj −Qk

∥∥ ,1 ≤ k ≤ N, as shown in Fig.
6.2. Also the ( j +1)-th row is

r j+1 = (BG(Pj+1,Q1) ,G(Pj+1,Q2) , ...,G(Pj+1,QN))
(6.21)

which depends on the distances
∥∥Pj+1 −Qk

∥∥ ,1 ≤ k ≤ N.

Now as R increases, the distance
∥∥Pj −Qk

∥∥ ,1 ≤ k ≤
N and

∥∥Pj+1 −Qk
∥∥ ,1 ≤ k ≤ N become approximately

equal. Hence, adjacent rows of A become approximately
equal and A becomes increasingly ill-conditioned. A
similar argument holds as N increases and adjacent
source points become closer together. Thus, a possi-
ble strategy for reducing ill-conditioning is to try to sat-
isfy the boundary conditions as well as possible using
a small number of source points. This suggests choos-
ing a larger number of field points

{
Pj
}M

j=1 than source

points
{

Q j
}M

j=1 and satisfying the boundary conditions,
in a least squares sense as indicated in Section 4.1. In
this case, we approximate v by

vN (P) =
N

∑
k=1

akG(P,Qk;λ) (6.22)
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where {ak}N
k=1 are obtained by solving

AT
L ALa = AT

L y (6.23)

where

AL=[BG(Pj,Qk;λ)] , 1 ≤ j ≤ M,1 ≤ k ≤ N (6.24)

where M ≥ N and

y = [g(Pj)−Bup (Pj)] , 1 ≤ j ≤ M. (6.25)

Figure 6.2: Source to field point distances

Unfortunately, AT
L AL can still be badly ill-conditioned.

Again, the ill-conditioning can be mitigated by using var-
ious techniques from statistical analysis. These, as be-
fore, can be based on the SVD of AT

L AL. In this case,

AT
L AL = UΛΛΛUT (6.26)

where U is orthogonal and ΛΛΛ is a diagonal matrix whose
diagonal elements are the eigenvalues of AT

L AL. Typical
methods are based on Tikhonov regularization [Tikohnov
and Arsenin (1977)] which is also known as ridge re-
gression [Golberg and Cho (2004)] in the statistical lit-
erature. Here we consider determining the regularized
solution xR by solving

xR = argmin‖ALx−y‖2 +k‖x‖2 , k > 0, (6.27)

where k > 0 is a regularization parameter.

In this case, xR satisfies(
AT

L AL +kI
)

xR = AT
L y. (6.28)

For k = 0, xR satisfies (6.23). In general, for k > 0,

AT
L AL + kI is better conditioned than AT

L AL. However,

as k increases, the error ‖x−xk‖ increases as well. Us-
ing statistical ideas it is possible to calculate the opti-
mal value of k [Golberg and Cho (2004)]. Two of the
most popular techniques are generalized cross validation
(GCV) [Wahba (1990)] and Hansen’s L-curve [Hansen
(1992)]. Again, both of these procedures are based on the
SVD of AT

L AL, which is just the usual spectral decompo-
sition of a symmetric matrix AT

L AL.

Hence,

xR =
N

∑
i=1

〈
AT

L y,ui
〉

µ2
i +k

(6.29)

where
{

µ2
k

}N
k=1 are the singular values of AT

L AL and
ui,1 ≤ i ≤ N are the columns of U. Details of the GCV
can be found in [Wahba, Golub and Health (1979);
Wahba (1990)].

In the L-curve one plots the points(
log‖xR‖2 , log‖ALxR −y‖2

)
(6.30)

and the resulting curve has the L shape shown in Figure
6.3.

Figure 6.3: L-curve

The optimum value of k corresponds to the “knee” of the
curve. Note that this plot can be obtained efficiently us-
ing (6.29), since it requires only the one time computa-
tion of the SVD of AL.

An alternative least squares procedure is to assume that
the source points

{
Q j
}N

k=1 are not fixed but are cho-

sen simultaneously with the source strengths {a k}N
k=1

in (6.1) [Fairweather and Karageorghis (1998)]. In
this case, ‖ALx−y‖2 is minimized with respect to(
{ak}N

k=1 ,{Qk}N
k=1

)
. This method is computationally

more intensive than either collocation or least squares
with fixed sources, particularly in R

3. Hence, we would
generally not recommend it for use in time dependent
problems.
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6.2 Galerkin’s Method

As we pointed out in Section 4, the boundary conditions
can be satisfied using the inner product given in (4.24).
We expect this method to be more stable than colloca-
tion, particularly if the basis is orthonormal as indicated
in [Bergman and Herriot (1961)].

6.3 Multiply Connected and Unbounded Domains

If D is a bounded, multiply connected domain as shown
in Fig. 6.4, then sources need to be placed in the interior
of the holes in D as well in the unbounded component
of the complement of D in order to satisfy the bound-
ary conditions. In general, the interior sources should
be placed far from the interior boundaries. At present,
we are unaware of any theory which determines how to
distribute the sources between the interior and the exte-
rior domains. However, it has been found experimentally
that it is best to put most of the sources in the exterior
domain. As for simply connected domains, the boundary
conditions can be satisfied using either collocation, least
squares or Galerkin’s method.

If D is simply connected and unbounded, then sources
should be placed in the bounded complement of D with
increasing accuracy usually being obtained the further
the sources are from the boundary S.

Figure 6.4: Source points for a multiply connected do-
main

6.4 Singular Solutions

So far we have assumed that the solution to the boundary
value problem is smooth. However, if either the bound-
ary S or the boundary data g is not smooth, the solution to
that boundary value problem can develop singularities in

the neighborhood of the singular points. Since the funda-
mental solution G(P,Q;λ) is C∞ for P 
= Q, the approx-
imate solution vN in (6.1) is C∞ as well and we will not
obtain a good approximation to solutions which are not
C∞. This same problem occurs in the BEM and in domain
based methods such as the FEM [Strang and Fix (1973);
Fix, Gulati and Wakoff (1973)]. How to deal with
this problem is not totally resolved. In [Karageorghis
(1992)], this problem was addressed for Laplace’s equa-
tion in 2D and [Tolley (1977)] and [Discroll (1995)]
considered this issue for the ordinary Helmholtz equa-
tion. The basic idea is to determine the asymptotic be-
havior of the solution near the singular points and then
add functions to the MFS expansion which display this
singular behavior. For example, if D is a polygon and
P ∈ S is a vertex with interior angle α/π, then the func-
tions Inα (λr)cos(nαθ), Inα (λr)sin(nαθ) are solutions
to
(
∆−λ2

)
v = 0, where (r,θ) is a polar coordinate sys-

tem centered at P. Then, in a neighborhood of P, we can
approximate v by an expression of the form

vN (P)

=
N

∑
k=1

akG(P,Qk;λ)+
M

∑
n=0

bnInα (λr)cos(nαθ)

+
M

∑
n=1

cnInα (λr) sin(nαθ) . (6.31)

To solve the global problem the domain can be decom-
posed in such a way that only one vertex occurs in each
subdomain as shown in Figure 6.5. Then, we introduce
an expansion of the form (6.31) in each subdomain Di.
Boundary conditions can be satisfied by collocation and
by requiring continuity of v and the normal derivative of
v across the element interfaces.

Figure 6.5: Decomposition of D and subdomains
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For problems in R
3, simple analytic expressions for the

singular functions do not seem to be available so this ap-
proach does not appear to be feasible [Grisvard (1992)].
At present, in analogy with the BEM, mesh grading of
collocation points may be possible as has been done
for some 2D problems in [Karageorghis and Fairweather
(1987)]. As yet, no results seems to have been published
using such an approach.

6.5 T-Trefftz Bases

6.5.1 Bases in R
2

We begin by assuming that D is a bounded, connected
and simply connected domain in R

2 and assume that the
solution to the boundary value problem{

∆v−λ2v = 0
Bv = g−Bup

(6.32)

is smooth. Assume in addition that the origin of coor-
dinates is located at the centroid of D. Introduce polar
coordinates (r,θ) with r = 0 at the centroid of D. Then it
is known that the set

{In (λr)cosnθ}∞
n=0 ∪{In (λr) sinnθ}∞

n=1 , (6.33)

where In is the Bessel function of second kind and or-
der n, is complete in the set of solutions of ∆v−λ 2v = 0
[Melenk (1995); Melenk and Babus̆ka (1995)]. Hence,
to approximate the solution to (6.32)-(6.33) we define

vN =
N

∑
n=0

anIn (λr)cosnθ+
N

∑
n=1

bnIn (λr)sinnθ. (6.34)

By definition, ∆vN − λ2vN = 0, so we need to pick the
constants {ak}N

k=0 and {bk}N
k=1 to satisfy the boundary

conditions in (6.32). As for the MFS, this can be done
by using either collocation, least squares or Galerkin’s
method. As before, this leads one to solve a system of
2N + 1 linear equations. These equations are generally
ill-conditioned, so that methods based on the SVD should
be preferable to straightforward Gaussian elimination.

In contrast to the MFS, it is possible to obtain good esti-
mates of the approximation orders of the T-Trefftz bases
(6.34). This can be done by using the Bergman-Vekua
theory of integral operator [Bergman and Shiffer (1953);
Bergman and Herriot (1961, 1965); Melenk (1995); Me-
lenk and Babus̆ka (1995)].

The basic idea is that given a complete set of solutions
of Laplace’s equation ∆u = 0 these can be mapped onto
a complete set of solutions to ∆v−λ 2v = 0. In particular,
if u0 (x,y) is a complex holomorphic solution to ∆v = 0,
then

V (x,y) = u0 (x,y)−
∫ 1

0
u0 (tx, ty)

∂
∂t

I0

(
λr
√

1− t
)

dt

(6.35)

is a solution of ∆v − λ 2v = 0 [Bergman and Herriot
(1961, 1965); Melenk (1995); Melenk and Babus̆ka
(1995)].

If we consider

u0 (x,y) ∈ S =
{

1, z, z, z2, z2, ..., zn, zn, ...
}

(6.36)

where z = x+ iy and z = x− iy, then S is a complete set of
holomorphic solutions to ∆u = 0.Then, it can be shown
that

V (zn) = cn (λ)einθIn (λr) (6.37)

and

V (zn) = cn (λ)e−inθIn (λr) (6.38)

where {cn (λ)} are appropriate constants, is a complete
set of complex solutions of ∆v−λ 2v = 0, where z = reiθ.

Then,

In (λr)cosnθ =
V (zn)+V (zn)

2cn (λ)
(6.39)

and

In (λr)sinnθ =
V (zn)−V (zn)

2cn (λ)
(6.40)

is a complete set of real solutions to ∆v−λ 2v = 0.

Using classical error estimates for approximation by har-
monic polynomials, i.e., elements in span S , and the fact
that (6.35) is a bounded operator in appropriate Banach
spaces of functions, enables one to obtain error estimates
for approximation by the Trefftz basis (6.33). A classical
result of this type is given below.

Theorem 6.1 [Mergelyan (1962)] Let D ⊆ R
2 be a sim-

ply connected, bounded Liponitz domain with bound-
ary S. Let D̂ be such that D∪ S ⊆ D̂ and assume that
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Figure 6.6: D with a single hole

f ∈ L2
(
D̂
)

is holomorphic in D̂. Then, there exists a har-
monic polynomial ϕ p of degree p such that

‖ f −ϕp‖∞ ≤ c1e−γp ‖ f‖2 , (6.41)

and∥∥ f ′ −ϕ′
p

∥∥
∞ ≤ c2e−γp ‖ f‖2 , γ> 0, (6.42)

where c1 and c2 do not depend on ϕ p.

Using Theorem 6.1 and the boundedness of (6.38) in L ∞,
it follows that if v is a holomorphic solution of ∆v−λ 2v =
0, there exists a function of the form (6.34) such that

‖v−vN‖∞ ≤ c1e−γN ‖ f‖2 , (6.43)

and∥∥v′ −v′N
∥∥

∞ ≤ c2e−γN ‖ f‖2 ,γ> 0. (6.44)

In [Melenk (1995)] and [Melenk and Babus̆ka (1995)],
more general theorems with relaxed smoothness condi-
tions on v are given. We refer the reader there for details.

Using these results, one can obtain error estimates for the
Trefftz approximation vN to v provided that the coeffi-
cients {ak}N

k=0∪{bk}N
k=1 are chosen by using Galerkin’s

method.

If D is multiply connected, then using T-Trefftz bases be-
comes increasingly complex. For example, suppose D is
bounded with a single hole as shown in Figure 6.6 and
assume that we have a polar coordinate system with the
origin at the centroid of D1.

Then, the corresponding Trefftz basis will contain terms
of the form

{Kn (λr)cosnθ}N1
n=0 ∪{Kn (λr)sinnθ}N1

n=1 (6.45)

where by letting λr = z,

Kn (z)

=
1
2

(
1
2

z

)−n n−1

∑
k=0

(n−k−1)!
k!

(
−1

4
z2
)k

+(−1)n+1 ln

(
1
2

z

)
In (z)

+(−1)n 1
2

(
1
2

z

)n

∞

∑
k=0

[ψ(k +1)+ψ(n+k +1)]

(
1
4z2
)k

k!(n+k)!
(6.46)

are Bessel functions of the third kind [Abramovitz and
Stegun (1965)], where ψ(z) = Γ ′ (z)/Γ (z) is called
the digamma function; ψ(1) = −γ and ψ(n) = −γ+
∑n−1

k=1 k−1 for n ≥ 2 (γ is Euler’s constant).

Generally, for each hole one needs to add corresponding
terms of the form (6.45) to the Trefftz expansion centered
at the centroids of each hole. In this regard, using T-
Trefftz bases appears to be more difficult than the MFS.

As for the MFS, care needs to be taken if the solution
has singularities either due to geometric singularities or
singularities due to the boundary data g. As there, the
best approach is to determine the asymptotic behavior of
the solution in the neighborhood of the singular points
and add singular functions to the Trefftz expansion as for
the MFS.

Although we have approached T-Trefftz basis for ∆−λ 2

by Bergman-Vekua operators, the more classical ap-
proach is to observe that the basis (6.33) can be obtained
by separation of variables of ∆v− λ 2v = 0 in polar co-
ordinates. This suggests that other Trefftz bases can be
obtained by separation of variables in other coordinate
systems. In particular, if Cartesian coordinates are used,
one can look for solutions in the form

v(x,y) = Aexp(αx+βy). (6.47)

Substituting(6.47) into ∆v−λ 2v = 0 gives α2+β2−λ2 =
0, so α2 +β2 = λ2. Hence, (α,β) must lie on a circle with
radius λ. If we choose

(αN,k,βN,k) = λ
(

cos
2πk
N

, sin
2πk
N

)
, 0 ≤ k ≤ N −1,

(6.48)
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then we conjecture that the set

∞⋃
N=1

N−1⋃
k=0

(αN,k,βN,k) (6.49)

is a Trefftz basis for ∆v−λ2v = 0. This result is known to
be true for the ordinary Helmholtz equation ∆v+λ 2v = 0
where λ in (6.48) is replaced by iλ, i2 = −1 [Melenk
(1995); Melenk and Babus̆ka (1995)]. We expect this
basis to be more efficient than the standard T-Trefftz and
MFS bases, since it does not require the calculation of
Bessel functions.

6.5.2 Bases in R
3

For simplicity, we restrict our discussion to the case
where D is a bounded, connected and simply connected
domain in R

3 and assume that the solution to the bound-
ary value problem (4.4)-(4.5) is smooth.

Letting (r,θ,ϕ) be spherical polar coordinates in R
3, then

it is known that the functions

{im (λr)Pn
m (cosθ)sin(nϕ) ,

im (λr)Pn
m (cosθ)cos(nϕ)} ,

−m ≤ n ≤ m,m = 0,1,2, .. (6.50)

is a Trefftz basis for solutions of ∆v − λ 2v = 0. Here,
im (λr) is the spherical Bessel function of the second kind
of order u and Pn

m (cosθ) are the associated Legendre
functions [Golberg and Chen (1996); Cheung, Jin and
Zienkiewicz (1991)]. Thus, we can obtain approximate
solutions of the form

vN (P) =
N

∑
m=0

m

∑
n=−m

am,nim (λr)Pn
m (cosθ)sin(nϕ)

+
N

∑
m=0

m

∑
n=−m

bm,nim (λr)Pn
m (cosθ)cos(nϕ) . (6.51)

As in R
2, the constants {am,n} and {bm,n} are obtained by

satisfying the boundary conditions either by collocation,
least squares or Galerkin’s method.

As in R
2, there is a generalization of the Bergman-Vekua

theory which enables one to obtain the bases (6.50) as
the image of harmonic polynomials under an appropriate
integral operator. Details can be found in [Tjong (1970);
Colton (1971); Gilbert and Lo (1971)]. The complete-
ness of (6.50) can be established using this fact. How-
ever, sharp error bounds do not seem to be available as in
R

2.

As in R
2, we can consider obtaining alternative bases by

separating variables in Cartesian rather than polar coor-
dinates. Hence, we look for solutions to ∆v−λ 2v = 0 in
the form

v = Aexp(αx+βy+γz) . (6.52)

Substituting (6.52) into ∆v−λ 2v = 0 we find that (α,β,γ)
satisfy

α2 +β2 +γ2 = λ2 (6.53)

so that (α,β,γ) lies on a sphere of radius λ in R
3. As

in R
2, we conjecture that if {(α k,βk,γk)}∞

k=1 is a dense
subset of this sphere, then the set

{exp(αkx+βky+γkz)}∞
k=1 (6.54)

is a Trefftz basis for ∆v−λ2v = 0. This suggests choosing

α j,k = λ sin
πj
n

cos
2πk
m

, 0 ≤ j ≤ n−1, 0 ≤ k ≤ m−1

(6.55)

β j,k = λ sin
πj
n

sin
2πk
m

, 0 ≤ j ≤ n−1, 0 ≤ k ≤ m−1

(6.56)

γj = λ sin
πj
n

, 0 ≤ j ≤ n−1, (n,m)≥ 1 (6.57)

as appropriate points on the sphere of radius λ to use in
(6.54). This basis should be computationally more ef-
ficient than the classical basis (6.50), since it does not
require the calculation of special functions.

7 Numerical Results

In this section, we present several numerical examples
illustrating our methodology. For simplicity, we restrict
ourselves to the RBF spline-MFS for the diffusion equa-
tion.

Example 7.1 Consider the following parabolic equation

∂u
∂t

= ∆u+ f (x,y, t) (7.1)

in the domain [0,1]× [0,1]. The forcing term is given by

f (x,y, t) = sinxsiny(2sint +cos t). (7.2)
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The initial and boundary conditions correspond to the so-
lution

u(x,y, t) = sinxsinysint. (7.3)

This example was considered by Ingber and Phan-Thien
[Ingber and Phan-Thien (1992)] using a boundary ele-
ment method. To approximate the forcing term f , we
chose 48 interpolation points (see Figure 7.1) in which
32 boundary points were used as the collocation points
for the MFS. We chose polyharmonic splines of order
two (r4 logr) as the basis function. To evaluate the ho-
mogeneous solution using the MFS, we chose 32 source
points on a circle with center at (0.5,0.5) and radius 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.1: The distribution of collocation points for the
RBF.

To verify the effectiveness of the MFS-RBF algorithm,
we computed the errors at the point (0.8,0.8). The graph
of u(0.8,0.8,t), for 0 ≤ t ≤ 25, is shown in Figure 7.2.
The errors using τ = 0.05 and τ = 0.025 are shown in
Figure 7.3. Similar results were obtained at other points.
The results are highly accurate for the smaller time step
τ. Increasing the number of interpolation points from the
current setting has little affect on the numerical accuracy.
The numerical results using the MFS-RBF algorithm are
superior to those in [Ingber and Phan-Thien (1992)]. The
convergence rate of the method using different time steps
is shown in Figure 7.4.

Example 7.2 Consider the diffusion equation (7.1) with
f = 0 in a cubic region 0 ≤ x1,x2,x3 ≤ 1 with unit ther-
mal conductivity and diffusivity. The boundary condi-
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8
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Figure 7.2: Profile of the solution of u(0.8,0.8, t) for
0 ≤ t ≤ 25.
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Figure 7.3: The profile of errors using τ = 0.05 and τ =
0.025 at (0.8,0.8).

tions are given by

u(0,x2,x3, t) = 0,u(1,x2,x3, t) = 1 for

0 ≤ x2,x3 ≤ 1.0, t > 0

∂u
∂n

(x1,x2,0, t) =
∂u
∂n

(x1,x2,1, t) = 0 for

0 ≤ x1,x2 ≤ 1.0, t > 0,

∂u
∂n

(x1,0,x3, t) =
∂u
∂n

(x1,1,x3, t) = 0 for

0 ≤ x1,x3 ≤ 1.0, t > 0.
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Figure 7.4: Convergence rate of the Euler method

The initial condition is given by u(x 1,x2,x3,0) = 0 for
0 < x1,x2,x3 < 1. This problem has been considered by
[Ingber, Chen and Tanski (2004)]. It represents the 1D
problem of an insulated unit bar with initial temperature
zero whose left-hand boundary is isothermal at 0 and
whose right hand boundary is impulsively raised to one
at time t = 0. The exact solution can be determined using
separation of variables and is given in [O’Neil (1999)].

The solution is discretized with 218 source points out-
side the domain (M = 218) and 343 interpolation points
(N = 343). Among them, 218 of the interpolation points
are located on the surface of the domain while the re-
maining 125 interpolation points are located in the inte-
rior of the domain. The radius of the fictitious bound-
ary is 8. In Table 7.1, PS1, PS2 and PS3 denote poly-
harmonic splines r2k−1,k = 1,2,3, respectively. In gen-
eral, the results get better with higher order polyharmonic
splines and reduced time steps, but this is not always the
case. Care must be taken in either reducing the time step
or going to higher order polyharmonic splines, since the
higher-order polyharmonic splines result in worse condi-
tioning of the linear system associated with the particular
solution and smaller time steps result in worse condition-
ing (large λ) of the linear system associated with the ho-
mogeneous solution. In fact, for small time steps, the
Euler implicit method (θ = 1) is more accurate than the
Crank-Nicolson method (θ = 0.5) despite the difference
in the local truncation error for the two methods. The
current results are consistent with results of [Muleshkov,

Golberg and Chen (1999)] who showed that improve-
ment in accuracy can be obtained by using higher order
polyharmonic splines for elliptic boundary value prob-
lems. Further, they show limited improvement for time-
dependent problems presumably because the dominant
error was caused by the time-stepping scheme.

Table 7.1: Absolute maximum errors at t = 1 using poly-
harmonic splines.

θ ∆t PS1 PS2 PS3
0.01 1.00E−2 2.83E−3 1.38E−2
0.005 1.57E−2 2.77E−3 2.40E−3

0.5 0.002 2.92E−2 2.47E−3 1.96E−3
0.001 4.56E−2 2.50E−3 overflow
0.01 1.73E−2 1.39E−2 1.38E−2
0.005 1.35E−2 7.20E−3 7.07E−3

1 0.002 1.84E−2 3.31E−3 3.02E−3
0.001 2.86E−2 2.26E−3 1.76E−3

8 Conclusions

We have shown how to solve a class of second order
time dependent PDEs in a mesh-free manner by con-
verting IBVPs for these equations to solving a sequence
of BVPs for inhomogeneous modified Helmholtz equa-
tions. These BVPs were solved by a combination of
the method of particular solutions and Trefftz methods.
The key ingredient in this approach is the need to com-
pute a particular solution of the inhomogeneous modified
Helmholtz equation. To do this, we focus on the DRM
approach to obtain particular solutions based on radial
basis function, polynomial or Fourier series approxima-
tions to the source term. The resulting homogenous BVP
is then solved by either the MFS or the classical Trefftz
bases obtained by separation of variables. The relation
of these bases to the Bergman-Vekua integral operator
method is discussed.

To satisfy the boundary conditions we considered using
collocation, least squares and Galerkin’s method. An im-
portant issue here is the problem of mitigating the ill-
conditioning of the resulting linear system. Here, we
proposed a number of techniques from the statistical lit-
erature based primarily on the SVD of the boundary ma-
trices. This topic will be further investigated in future
work. Some numerical results are presented using the
MFS-RBF algorithm showing the accuracy of the method
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for both two dimensional and three dimensional prob-
lems for transient heat conduction.

Although this approach appears quite promising, much
remains to be done. One needs to determine op-
timal combinations of time removal schemes, source
term approximation and Trefftz bases. Mitigating ill-
conditioning and obtaining error estimates will be the fo-
cus of future work. Finally, exploiting additional struc-
ture such as axisymmetry is an important topic for future
research.

References

Abramovitz, M.; Stegun, I. A. (1965): Handbook of
Mathematical Functions. Dover Publications, New York.

Alves, C. J. S. (2000): Density results for the Helmholtz
equation and the MFS. Advances in Computational En-
gineering and Sciences, Eds. S. Atluri and F.W. Brust.
Tech Sc. Press, 45-50.

Ang, W. T. (2000): A boundary integral equation method
for the two dimensional diffusion equation subject to a
non-local condition. Engineering Analysis with Bound-
ary Elements, 25, 1-6.

Ang, W. T. (2002): A boundary integral equation method
for the three dimensional heat equation subject to specifi-
cation of energy. Journal of Computational and Applied
Mathematics,135, 303-311.

Atkinson, K. E. (1985): The numerical evaluation of
particular solutions for Poisson’s equation. IMA Journal
of Numerical Analysis, 5, 319-338.

Atluri, S. N.; Han, Z. D.; Shen, S. (2003): Meshless Lo-
cal Petrov-Galerkin (MLPG) approaches for solving the
weakly-singular traction & displacement boundary inte-
gral equations, CMES: Computer Modeling in Engineer-
ing & Sciences, 4, 507-518.

Atluri, S. N.; Shen, S. (2002): The Meshless Local
Petrov-Galerkin (MLPG) method: A simple and less-
costly alternative to the finite element and boundary ele-
ment methods, CMES: Computer Modeling in Engineer-
ing & Sciences, 3, 11-52.

Atluri, S. N.; Zhu, T. (1998): A new meshless local
Petrov-Galerkin approach. Computational Mechanics,
22, 221-236.

Balakrishnan, K.; Sureshkumar, R.; Ramachandran,
P. A. (2002): An operator splitting-RBF method for the

solution of transient nonlinear Poisson problems. Com-
puters and Mathematics with Applications, 43, 289-304.

Belytschko, T.; Lu, Y. Y. (1994): Element-free Galerkin
methods. International Journal of Numerical Methods in
Engineering, 37, 229-250.

Bergman, S.; Herriot, J. G. (1961): Application of the
method of kernel functions for solving boundary value
problems. Numerische Mathematik, 3, 209-225.

Bergman, S.; Herriot, J. G. (1965): Numerical solution
of boundary value problems by the method of integral
operators. Numerische Mathematik, 7, 42-65.

Bergman, S.; Shiffer, M. (1953): Kernel functions
and elliptic differential equations. Academic Press, New
York.
Bochner, S. (1959): Lectures on Fourier Integrals.
Translated by Morris Tenenbaum and Harry Pollard.
Princeton University Press. Princeton.

Bogomolny, A. (1985): Fundamental solutions method
for elliptic boundary value problems. SIAM Journal on
Numerical Analysis, 22, 644-669.

Boyd, P. J. (2001): Spectral Methods in Fluid Dynamics,
2nd ed. Dover Publications, New York.

Chapko, R.; Kress, R. (1997): Rothe’s method for the
heat equation and boundary integral equations, Journal
of Integral Equations and Applications, 9, 47-68.

Cannon, J. R.; Lin, Y. (1990): Galerkin procedure for
diffusion equations with boundary integral conditions.
International Journal of Engineering Science, 28, 579-
587.

Chapko, R.; Kress, R. (2000): On the numerical solu-
tion of initial boundary value problems by the Laguerre
transform and boundary integral equations. Integral and
Integro-differential Equations Theory, Methods and Ap-
plications, series in Mathematical Analysis and Appli-
cations, Vol. 2. Gordon and Breach Science Publishers,
Amsterdam, 55-69.

Chen, J. T.; Chen, I. L.; Wu, C. S. (2003): On the
equivalence of MFS and Trefftz method for Laplace
problems. preprint.

Chen, C. S.; Golberg, M. A.; Ganesh, M.; Cheng, A.
H-D. (2002): Multilevel compact radial functions based
computational schemes for some elliptic problems. Com-
puters and Mathematics with Application, 43, 359-378.

Chen, C. S.; Rashed, Y. F.; Golberg, M. A. (1998): A
mesh free method for linear diffusion equations, Numer-
ical Heat Transfer, Part B, 33, 469-486.



34 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.1-37, 2004

Cheung, Y. K.; Jin, W. C.; Zienkiewicz, O. C. (1991):
Solution of Helmholtz equation by Trefftz method. Inter-
national Journal of Numerical Methods in Engineering,
32, 62-78.

Colton, D. (1971): Bergman operators for elliptic equa-
tions in three independent variables. Bulletin of the
American Mathematical Society, 77, 752-756.

Derrick, W. R.; Grossman, S. I. (1976): Elemen-
tary Differential Equations with Applications, Addison-
Wessley Publishing Co.

Descloux, J.; Tolley, M. (1983): An accurate algo-
rithm for computing the eigenvalues of a polygonal mem-
branes. Computer Methods in Applied Mechanical Engi-
neering, 39, 37-53.

Discroll, T. A. (1995): Eigenvalues of Isopectral Drums,
CTC95 TR209. Advanced Computing Research Insti-
tute, Cornell University.

Duchon, J. (1976): Splines minimizing rotation invari-
ant semi-norms in Sobolev spaces. In Constructive The-
ory of Functions of Several Variables, Lecture Notes
in Mathematics 571, Eds. W. Schempp and K. Zeller,
Springer-Verlag, Berlin, 85-110.

Duchon, J. (1978): Sur l’ervur d interpolation des func-
tions de plusiers variables par les Dm-splines. RAIRO
Analyse Numerique, 12, 325-335.

du Plessis, N. (1969): Runge’s theorem for harmonic
functions. Journal of the London Mathematical Society,
404-408.

Eisenstat, S. C. (1974): On the rate of convergence of
the Bergman-Vekua method for the numerical solution
of elliptic boundary value problems. SIAM Journal on
Numerical Analysis, 11, 664-680.

Fairweather, G.; Karageorghis, A. (1998): The method
of fundamental solutions for elliptic boundary value
problems, Advances in Computational Mathematics, 9,
69-95.

Fix, G.; Gulati, S.; Wakoff, G. I. (1973): On the use of
singular functions with the finite element method. Jour-
nal of Computational Physics, 13, 209-228.

Floater, M. S.; Iske, A. (1996): Multistep scattered
data interpolation using compactly supported radial basis
functions. Journal of Computational and Applied Math-
ematics, 73, 65-78.

Friedman, A. (1964): Partial Differential Equation of
Parabolic Type. Prentice-Hall, Englewood Cliffs.

Ganesh, M.; Sheen, D. (2001): A naturally paralleliz-
able computational method for inhomogeneous parabolic
problems. CMES: Computer Modeling in Engineering &
Sciences. No. 2, 183-193.

Gilbert, R. P.; Lo, C. Y. (1971): On the approxima-
tion of solutions of elliptic partial differential equations.
SIAM Journal on Mathematical Analysis, 2, 17-30.

Golberg, M. A.; Bowman, H. (1998): Optimal conver-
gence rates for some discrete projection methods. Ap-
plied Mathematics and Computation, 96, 237-271.

Golberg, M. A.; Chen, C. S. (1996): Discrete Projection
Methods for Integral Equations, Computational Mechan-
ics Publications, Southampton.

Golberg, M. A.; Chen, C. S. (1998): The method of
fundamental solutions for potential, Helmholtz and dif-
fusion problems. Boundary Integral Methods: Numeri-
cal and Mathematical Aspects, Ed. M.A. Golberg, WIT
Press & Computational Mechanics Publications, Boston,
Southampton, 103-176.

Golberg, M. A.; Chen, C. S. (2001): An efficient mesh-
free method for nonlinear reaction-diffusion equations.
CMES: Computer Modeling in Engineering & Sciences,
2(1), 87-95.

Golberg, M. A.; Chen, C. S.; Bowman, H.; Power,
H. (1998): Some comments on the use of radial basis
functions in the dual receprocity method, Computational
Mechanics, 21, 141-148.

Golberg, M. A.; Chen, C. S.; Ganesh, M. (2000):
Particular solutions of the 3D modified Helmholtz-type
equation using compactly supported radial basis func-
tions. Engineering Analysis with Boundary Elements, 24,
539-547.

Golberg, M. A.; Cho, H. A. (2004): Introduction to re-
gression analysis. Wessex Institute of Technology, WIT
Press, Southampton.

Golberg, M. A.; Muleshkov, A. S.; Chen, C. S.;
Cheng, A. H-D. (2003): Polynomial particular solutions
for some partial differential operators. Numerical Meth-
ods for Partial Differential Equations, 19, 112-133.

Grisvard, P. (1992): Sigularities in Boundary Val-
ueProblems. Springer-Verlag/Masson.

Han, Z. D.; Atluri, S. N. (2003): Truly Meshless Lo-
cal Petrov-Galerkin (MLPG) solutions of traction & dis-
placement BIEs, CMES: Computer Modeling in Engi-
neering & Sciences, 4, 665-678.



Trefftz Methods 35

Hansen, P. C. (1992): Analysis of discrete ill-posed
problems by means of the L-curve, SIAM Review, 34,
561-580.

Herrera, I. (1980): A criterion for completeness. Pro-
ceedings of the National Academy of Sciences, 77, 4395-
4398.

Herrera, I. (1984): Boundary Methods: An algebraic
theory. Applied Mathematics series, Pitman, Boston.

Herrera, I. (2000): Trefftz methods: A general theory.
Numerical Methods for Partial Differential Equations,
16, 561-580.

Ingber, M. S.; Chen, C. S.; Tanski, J. A. (2004):
A mesh-free approach using radial basis functions and
parallel domain decomposition for solving three dimen-
sional diffusion equations, to appear in International
Journal of Numerical Methods in Engineering.

Ingber, M.; Mammoli, A.; Brown, M. (2001): A
comparison of domain integral evaluation techniques for
boundary element methods. International Journal of Nu-
merical Methods in Engineering, 52, 417-432.

Ingber, M. S.; Phan-Thien, N. (1992): A boundary el-
ement approach for parabolic differential equations us-
ing a class of particular solutions. Applied Mathematical
Modeling, 16, 124-132.

Janssen, H. L. (1997): Recursive construction of a se-
quence of solutions to homogeneous linear partial diff-
ential equations with constant coefficients. Journal of
Computational and Applied Mathematics, 20, 275-283.

Kansa, E. J. (1990a): Multiquadrics - a scattered data
approximation scheme with applications to computa-
tional fluid-dynamics- I -surface approximation and par-
tial derivative estimates. Computers and Mathematics
with Applications, 19, 127-145.

Kansa, E. J. (1990b): Multiquadrics - a scattered data
approximation scheme with applications to computa-
tional fluid-dynamics - II -solutions to parabolic, hyper-
bolic and elliptic partial differential equations. Comput-
ers and Mathematics with Applications, 19, 147-161.

Karageorghis, A. (1992): Modified methods of funda-
mental solutions for harmonic and biharmonic problems
with boundary singularities, Numerical Methods for Par-
tial Differential Equations, 8, 1-19.

Karageorghis, A.; Fairweather, G. (1987): The method
of fundamental solutionsfor the numerical solution of the
biharmonic equation. Journal of Computational Physics,
69, 435-459.

Katsurada, M.; Okamoto, H. (1996): The collocation
points of the fundamental solution method for the poten-
tial problem. Computers and Mathematics with Applica-
tions, 31, 123-137.

Kim, H.-G.; Atluri, S. N. (2000): Arbitrary placement
of secondary nodes, and error control, in the Meshless
Local Petrov-Galerkin (MLPG) method, CMES: Com-
puter Modeling in Engineering & Sciences, 1, 11-32.

Kita, E.; Kamiya, N. (1995): Trefftz method: An
overview. Advances in Engineering Software, 24, 1-12.

Kita, E.; Kamiya, N.; Ikeda, Y. (1996): Application of
the Trefftz method to sensitivity analysis of a three di-
mensional potential problem. Mechanics Structures and
Machinery, 24, 293-301.

Kitagawa, T. (1988): On the numerical stability of the
method of fundamental solutions applied to the Dirich-
let problem. Japan Journal of Applied Mathematics, 35,
507-518.

Kitagawa, T. (1991): Asymptotic stability of the funda-
mental solution method. Journal of Computational and
Applied Mathematics, 38, 263-269.

Kolodziej, J. A. (1987): Review of application of bound-
ary collocation methods in mechanics of continuous me-
dia. Solid Mechanics Archives, 12, 187-221.

Kupradze, V. D.; Aleksidze, M. A. (1964): The method
of functional equations for the approximate solution of
certain boundary value problems, U.S.S.R. Computa-
tional Mathematics and Mathematical Physics, 4, 82-
126.

Langdon, S. (1999): Domain Embedding Boundary In-
tegral Equation Methods and Parabolic PDEs, Ph.D. The-
sis, University of Bath, England.

Li, X.; Chen, C.S. (2004): A mesh-free method using
hyperinterpolation and Fast Fourier Transform for solv-
ing differential equations, to appear in Engineering Anal-
ysis with Boundary Elements.

Li, X.; Golberg, M. A. (2003): On the convergence
of the dual reciprocity method for Poisson’s equation.
Transformation of domain Effects to the Boundary, Eds.
Y.F. Rashed and C.A. Brebbia, WIT Press, Southampton.

Li, Q.; Shen, S.; Han, Z. D.; Atluri, S. N. (2003): Ap-
plication of Meshless Local Petrov-Galerkin (MLPG) to
problems with singularities and material discontinuities,
in 3-D Elasticity, CMES: Computer Modeling in Engi-
neering & Sciences, 4, 571-586.



36 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.1-37, 2004

Limic, M. (1981): Galerkin-Petrov method for
Helmholtz equation on exterior problems, Glasnik,
Mathematicki, 36, 245-260.

Lin, H.; Atluri, S. N. (2000): Meshless Local Petrov-
Galerkin (MLPG) method for convection-diffusion prob-
lems, CMES: Computer Modeling in Engineering & Sci-
ences, 1, 45-60.

Lin, H.; Atluri, S. N. (2001): The meshless Local
Petrov-Galerkin (MLPG) method for solving incom-
pressible Navier-Stokes equations, CMES: Computer
Modeling in Engineering & Sciences, 2, 117-142.

Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T.
(1995): Reproducing kernel particle methods. Interna-
tional Journal of Numerical Methods in Fluids, 20, 1081-
1106.

Lo, C. F. (1969): Numerical solutions of the unsteady
heat equation. AIAA Journal, 7, 973-975.

Long, S.; Atluri, S. N. (2002): A Meshless Local
Petrov-Galerkin method for solving the bending problem
of a thin plate, CMES: Computer Modeling in Engineer-
ing & Sciences, 3, 53-64.

Mayo, A. (1984): The fast solution of Poisson’s and the
biharmonic equations on irregular regions. SIAM Journal
on Numerical Analysis, 21, 285-299.

Mayo, A. (1992): The fast evaluation of volume inte-
grals of potential theory on general regions. Journal of
Computational Physics, 100, 236-245.

McKenney, A.; Greengard, L.; Mayo, A. (1995): A
fast Poisson solver for complex geometries, Journal of
Computational Physics, 118(2), 348-355.

Melenk, J. M. (1995): On generalized finite element
methods. Ph.D. Thesis. University of Maryland.

Melenk, J. M.; Babus̆ka, I. (1995): Approximation with
harmonic and generalized harmonic polynomials in the
partition of unity method. Computer Assisted Mechani-
cal Engineering Sciences. 4, 607-633.

Mergelyan, S. N. (1962): Uniform approximation to
functions of a complex variable. In Series and Approxi-
mation, Vol. 3, Translations Series 1, 294-391, AMS.

Moridis, G. J. (1987): Alternative formulations for the
Laplace transform and numerical solution of diffusion
type equations. Boundary Element Technology VII, Eds.
C.A. Brebbia and M.S. Ingber. Springer-Verlag, Berlin.

Muleshkov, A. S.; Chen, C. S.; Golberg, M. A.;
Cheng, A. H-D. (2000): Analytic particular solutions for
inhomogeneous Helmholtz-type equations. Advances in
Computational Engineering & Sciences, Eds. S.N. Atluri
and F.W. Brust, Tech Science Press, 27-32.

Muleshkov, A. S.; Golberg, M. A.; Chen, C. S. (1999):
Particular solutions of Helmholtz-type operators using
higher order ployharmonic splines. Computational Me-
chanics, 23, 411-419.

Nardini, D.; Brebbia, C. A. (1982): A new approach to
free vibration analysis using boundary elements. Bound-
ary Element Methods in Engineering, Ed. C.A. Brebbia,
312-326. Springer-Verlag.

O’Neil, P. V. (1999): Beginning Partial Differential
Equations. John Wiley & Son, New York.

Partridge, P. W.; Brebbia, C. A.; Wrobel, L.
C. (1992): The Dual Reciprocity Boundary Element
Method, CMP/Elsevier.

Paulino, G. H.; Sutradhar, A.; Gray, L. J. (2002):
Boundary element methods for functionally graded ma-
terials. IABEM 2002, University of Texas, Austin.

Powell, M. J. D. (1992): The theory of radial basis func-
tion approximation in 1990. Advances in Numerical
Analysis, Vol. II, Ed. W. Light, Oxford Science Publica-
tions, Oxford.

Ramachandran, P. A. (2002): Method of fundamental
solutions: singular value decomposition analysis. Com-
munications in Numerical Methods in Engineering, 18,
789-801.

Reutskiy, S. (2002): A boundary method of Trefftz type
with approximate trim functions. Engineering Analysis
with Boundary Elements, 26, 341-353.

Schaback, R. (1995): Error estimates and condition
numbers for radial basis function interpolation. Advances
in Computational Mathematics, 3, 251–264.

Sladek, J.; Sladek, V.; Atluri, S. N. (2001): A pure con-
tour formulation for the meshless local boundary integral
equation method in thermoelasticity, CMES: Computer
Modeling in Engineering & Sciences, 2, 423-434.

Sloan, I. H. (1995): Polynomial interpolation and hyper-
interpolation over general regions. Journal of Approxi-
mation Theory, 83, 238-254.

Stehfest, H. (1970): Algorithm 368: numerical inversion
of the Laplace transform. Commun. ACM, 13, 47-49.



Trefftz Methods 37

Strang, G.; Fix, G. J. (1973): An Analysis of the Finite
Element Method, Prentice-Hall, Englewood Cliffs.

Stroud, A. H. (1971): Approximate Calculation of Mul-
tiple Integrals. Prentice-Hall, Englewood Cliffs.

Su, J.; Tabarrok, B. (1997): A time-marching integral
equations method for unsteady state problems. Computer
Methods in Applied Mechanics and Engineering, 142,
203-214.

Sutradhar, A.; Paulino, G. H.; Gray, L. J. (2002):
Three-dimensional transient heat conduction in function-
ally graded materials. IABEM 2002, University of Texas,
Austin.

Tang, Z.; Shen, S.; Atluri, S. N. (2003): Analysis of
materials with strain-gradient effects: A Meshless Local
Petrov-Galerkin(MLPG) approach, with nodal displace-
ments only, CMES: Computer Modeling in Engineering
& Sciences, 4, 177-196.

Tikohnov, A. N.; Arsenin, V. G. (1977): On the Solution
of Ill-Posed Problems. John Wiley and Sons, New York.

Tjong, L. (1970): Operators generating solutions of cer-
tain partial differential equations and their properties.
Proceedings of the Symposium on Analytic Methods in
Mathematical Physics, Eds. R.P. Gilbert and R.G. New-
ton. Gordon and Beach, New York.

Tolley, M. (1977): Grande eléments finis singuliers.
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